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Abstract 

 

Pelajo, Jonas Caldara; Gomes, Leonardo Lima. Innovative Decision Models 
for Energy Commercialization (Advisor). Rio de Janeiro, 2024. 155p. Tese 
de Doutorado - Departamento de Administração, Pontifícia Universidade 
Católica do Rio de Janeiro. 

In the last decade, the Brazilian electricity sector has faced regulatory and 

operational challenges due to the need to adapt to changes in the energy matrix, 

which shows a growing share of intermittent renewable energies, such as solar 

photovoltaic and wind energy. Additionally, social and environmental restrictions 

on the construction of new hydroelectric reservoirs require the development of new 

models for hydrological risk management. This thesis comprises four studies and 

aims to develop decision support models that contribute to the management of the 

national interconnected system and the optimization of relevant processes in the 

sector, considering the current scenario. The first study, by defining a methodology 

for accessing the parameters of the ECP_G functional, contributes to the innovation 

and improvement of theoretical models, with practical results for the sector. The 

second study contributes to the process of seasonalizing the physical guarantee and 

reveals an optimal strategy that simultaneously maximizes the results of generating 

agents, preventing reductions in payoffs resulting from individual movements of 

competitors. The third study proposes a commercialization portfolio optimization 

model, which allows agents to adequately expose themselves to risk, contributing 

to more efficient commercial management. Finally, the fourth study presents an 

operational model for an energy futures clearing house, offering valuable insights 

for stakeholders interested in establishing such a project in Brazil, where no energy 

futures clearing house currently exists. 
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Resumo 

 

Pelajo, Jonas Caldara; Gomes, Leonardo Lima. Modelos de Decisão 
Inovadores para Comercialização de Energia. Rio de Janeiro, 2024. 155p. 
Tese de Doutorado - Departamento de Administração, Pontifícia 
Universidade Católica do Rio de Janeiro. 

Na última década, o setor elétrico brasileiro tem enfrentado desafios 

regulatórios e operacionais devido à necessidade de adaptação às mudanças na 

matriz elétrica, que apresenta uma participação crescente de energias renováveis 

intermitentes, como a solar fotovoltaica e a eólica. Além disso, restrições sociais e 

ambientais para a construção de novos reservatórios hidrelétricos exigem o 

desenvolvimento de novos modelos para a gestão do risco hidrológico. Esta tese é 

composta por quatro estudos e tem como objetivo desenvolver modelos de apoio à 

decisão que contribuam para a gestão do sistema interligado nacional e para a 

otimização de processos relevantes do setor, considerando o cenário atual. O 

primeiro estudo, ao definir uma metodologia de acesso aos parâmetros do funcional 

ECP_G, contribui para a inovação e o aprimoramento de modelos teóricos, com 

resultados práticos para o setor. O segundo estudo contribui para o processo de 

sazonalização da garantia física e revela uma estratégia ótima que maximiza 

simultaneamente os resultados dos agentes geradores, prevenindo reduções nos 

payoffs resultantes de movimentos individuais de concorrentes. O terceiro estudo 

propõe um modelo de otimização de portfólio de comercialização, que permite aos 

agentes uma exposição adequada ao risco, contribuindo para uma gestão comercial 

mais eficiente. Finalmente, o quarto estudo apresenta um modelo de operação de 

uma bolsa de futuros de energia, fornecendo informações relevantes para agentes 

interessados em implementar um empreendimento desse tipo no Brasil, que ainda 

não possui uma bolsa de futuros de energia. 
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1 
Introduction 

The Brazilian electricity grid is predominantly fueled by renewable sources, 

which accounted for 87.9% of total electricity production in 2022. Notably, solar 

photovoltaic and wind energy have played significant roles in the recent surge of 

renewable energy in Brazil's electricity grid, although hydroelectric power remains 

the predominant source. Photovoltaic solar generation achieved 30.1 terawatt-hours 

(TWh), representing a staggering 79.8% increase compared to the previous year. 

Wind generation, on the other hand, reached 81.6 TWh, demonstrating a growth of 

12.9% compared to the previous year. Hydroelectric generation contributed 64.3 

TWh, marking a substantial 17.7% growth compared to 2021 (EPE, 2023). The 

expansion in hydroelectric energy production was primarily driven by hydrological 

conditions rather than an increase in installed capacity. 

Although hydraulic generation is currently the most representative in the 

Brazilian electricity matrix, this source of energy has been experiencing, in recent 

years, several challenges regarding regulation, mainly concerning the hydrological 

risk. The reduction in reservoir levels, which became more evident in 2014 and 

2015, added to other issues on planning and execution of infrastructure expansion, 

generated a crisis that resulted in losses for agents, mainly generators. 

As a result, many generating agents sued the system operator, which, among 

other results, suspended a large part of the apportionment of the energy reallocation 

mechanism (MRE), generating a billionaire debt to the electricity sector, which is 

still pending in court. 

While much of these issues stemmed from prolonged droughts and declining 

reservoir levels, it is essential to recognize that the electricity sector crisis is not 

solely tied to reduced reservoir levels. The prevailing model of the Brazilian 

electrical system's development and expansion is no longer suitable for the current 

landscape, where constraints on new reservoir construction and the increasing 

intermittency of load profiles have made system management considerably more 

complex. In 2022, there was a significant uptick in the proportion of wind and solar 
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energy within the energy matrix, as highlighted in  Table 1, maintaining the 

trajectory of an expanding presence of renewable and intermittent energy sources 

within the matrix. 

 

Energy Source  
2021 

(GWh) 
2022 

(GWh) 
Δ 2022/2021  

Hydroelectric 362,818 427,114 17.7% 

LNG (Liquefied Natural Gas) 86,957 42,110 -51.6% 

Wind 72,286 81,632 12.9% 

Biomass 52,416 52,223 -0.4% 

Nuclear 14,705 14,559 -1.0% 

Coal 17,585 7,988 -54.6% 

Oil derivates 17,327 7,056 -59.3% 

Photovoltaic solar 16,752 30,126 79.8% 

Other 15,263 14,364 -5.9% 

Total Generation 656,109 677,173 3.2% 

Table 1 – Brazilian energy matrix: energy sources comparison between 2022 and 
2021 

Source: EPE (2023) 

 

Renewable energies, especially wind and solar, present additional complexity 

to the system, as they depend heavily on meteorological variables and do not have 

reservoirs, as occurs with most of hydraulic energy generation, what leads to high 

volatility to the load, the energy produced is automatically inserted into the system, 

with priority in the dispatch in relation to other types of energy. The national system 

operator then needs to create several mechanisms to compensate for this high 

volatility and meet demand for energy. In some cases, the operator does not dispatch 

the energy from hydroelectric energy plants, even with hydrological conditions for 

this to have occurred, to compensate for the load conditions of the wind and solar 

plants. 

The crisis showed, therefore, that the hydrological risk management 

mechanisms needed to be reassessed and the agents involved have been looking for 

different alternatives to solve this problem. In 2015, the Government allowed the 

renegotiation of the hydrological risk to the generators, through the Law 

13.203/2015 (Brasil, 2015) and ANEEL Normative Resolution No. 684/2015 

(ANEEL, 2015), with the aim of reducing the risk to which the energy generators 

were exposed, sharing it with the consumers. However, it is still necessary to 

modernize the Brazilian electricity sector to ensure proper operation and the ability 
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to expand the system supporting the country development while maintaining the 

attractiveness of the investment. 

As part of efforts to modernize the electricity sector, in 2019, the government 

published Ordinance 187 of April 4 (MME, 2019), which establishes important 

guidelines towards the modernization of the Brazilian electricity sector, promoting 

perspectives of changes in the market environment and mechanisms to enable the 

expansion of the Electricity System, price formation mechanisms, energy 

reallocation mechanism (MRE) and risk cost allocation. 

In this context, the various decision support models that were developed need 

to be rebuilt and new ones will need to be developed for the current regulatory and 

operational scenario of the electricity sector. The objective of this work is, in the 

context of the Electricity Sector Modernization Program, to develop new decision 

support models for energy commercialization, involving the following themes: 

Parameterization of the new preference function ECP_G for the electricity sector 

proposed by Luz (2016), which is a generalization of the Extended CVaR 

Preference functional (ECP) proposed by Street (2010); physical guarantee 

seasonalization; portfolio optimization for commercialization; operating model for 

an energy futures clearing house in Brazil. 

 

1.1 
Research objectives 

The objective of this work is to develop, in the light of the new regulatory 

scenario of the Brazilian electricity sector: 

a) A methodology to define the parameters of ECP_G functional and its 

underlying utility function, proposed by Street (2016). 

b) A new decision model for the seasonalization of the physical 

guarantee of hydroelectric plants within the scope of the energy 

reallocation mechanism (MRE). The model will also be applied to a 

scenario of big player of Brazilian marketing.  

c) A decision model to hedge the energy generation portfolio and 

contracts. The model will also be applied to a scenario of a big player 

of Brazilian marketing. 
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d) An operation model for a clearing house to Brazilian futures energy 

market. 

 

1.2 
Scope delimitation 

This work was carried out jointly with a large company that operates in the 

electricity generation and commercialization sector. The models were developed 

and tested for this company, but they were developed in the most generic way as 

possible so that they can be used by other agents in the electricity sector. 

 

1.3 
Research outline 

The research is quantitative and involves decision making under uncertainty. 

The population of interest are hydroelectric power plants and energy traders. The 

research was carried out with a company that has its own generation power plant 

portfolio and commercialization contracts in sufficient volume for the application 

of the models developed. The models were made as generically as possible. The 

power plants selected for the study have size, location and technology 

characteristics that make them a good representative of the hydroelectric power 

plants population. 

 

1.4 
Main contributions 

This work was developed with the objective of promoting academic advances 

that may be applicable to practical cases related to participants in the electricity 

sector. The main contributions and novelty of this work to the state of the art are: 

a) The ECP functional has been widely used since 2013 by the System 

Operator for hydrothermal dispatch optimization and, also, in several 

other problems regarding the electricity sector. One of its main 

advantages is the ease of implementation in dual stochastic 

programming problems (Luz, 2016). However, the parameters that 

reflect the preferences of each agent are defined based on the 

experience of the operators and there is currently no method to 
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determine these parameters described in the literature. By defining a 

methodology to access the functional parameters, this work 

contributes to the innovation and improvement of theoretical models, 

with practical results for the sector. 

b) The development of a seasonalization model, which will help 

hydroelectric energy generators to optimize the seasonalization 

process, which is performed once a year for each power plant. 

Currently, this process is performed relying on the experience of 

specialists of power plants, but there is no consolidated optimization 

model to support the decision process. The seasonalization process is 

important because it can lead to large financial loses or gains 

depending on how volatile the price of energy through the year is. 

c) Energy traders often own power generation plants. An optimization 

model for simultaneously hedging the generation portfolio and 

contracts will help these participants to have a more profitable 

operation, adequate to the risk levels they are willing to face, 

according to their risk profile. Currently, a large part of the portfolio 

optimization process is done with intuitive assessment to the risk 

profile, which can lead to inadequate risk exposure. The proposed 

optimization model allows agents to be adequately exposed to their 

risk profile and optimize their returns, considering the portfolio of 

generation contracts. 
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2 
Parameter Estimation for Generalized Extended CVaR 
Preference Function 

2.1  
Introduction  

 

The Extended CVaR Preference functional (ECP), proposed by Street (2010), 

is an optimization measure that weighs the expected revenue value and the 

conditional Value-at-Risk (CVaRα) distribution at a given significance level α 

(equation (1)). The ECP functional became a very important measure for Brazilian 

electricity sector as it started to be applied, in 2013, for the optimization of a variety 

of problems by the national system operator, including the dispatch of the 

hydrothermal energy. Dual stochastic problems are particularly suitable to be solved 

using ECP functional due the optimization implementation simplicity. 

 

 𝐸𝐶𝑃ఈ,ఒ =  (1 − 𝜆)𝐸[𝑥෤] + 𝜆𝐶𝑉𝑎𝑅ఈ;  𝜆 ∈  [0,1] (1) 

 

where 𝜆 is the aversion risk parameter, 𝐸[𝑥෤] is the expected value of 𝑥෤, 𝐶𝑉𝑎𝑅ఈ is 

the Conditional Value-at-Risk for level 𝛼 and 𝑥෤ is the set of possible outcomes 

assigned to the random variable x. 

 

Luz (2016) proposed a generalization of ECP functional, ECP_G, shown in 

equation (2), and its underlying utility function, a generalization of Street’s 

proposed functional, for one period, which results directly in the generalization of 

the ECP to 𝑁 levels or reference points of risk aversion. 

 

 
𝐸𝐶𝑃

ఈ,ఒ
=  𝐸[𝑢(𝑥෤)] = 𝜆଴𝐸(𝑥෤) + ෍ 𝜆௡𝐶𝑉𝑎𝑅ఈ೙

ே

௡ୀଵ
; 

(2) 

 
𝜆௡ ≥ 0 𝑒 ෍ 𝜆௡

ே

௡ୀଵ
= 1 
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The concept behind the ECP_G, along with its underlying utility function, 

aims to facilitate the representation of distinct risk aversion behaviors exhibited by 

each agent across various risk levels. Typically, the utility function doesn't exhibit 

a linear behavior across the entire range of potential outcomes. The introduction of 

a piecewise linear function serves the purpose of capturing these nonlinear patterns 

comprehensively. This approach proves to be highly advantageous, offering a 

valuable combination of usefulness, flexibility, and precision. Importantly, it 

maintains the simplicity associated with the use of linear functions, ensuring that 

neither the mathematical complexity nor the processing time of optimization 

programs is increased. Risk aversion and its different components are extensively 

detailed in Raiffa and Keeney (1975) and the idea of using piecewise linear 

functions for this type of problem is found in Rabin (2000). 

Despite the wide acceptance of the piecewise linear function as a form of 

representation for the agent’s utility function, and its extensively within the 

electricity sector, notably by the national system operator in their optimization 

programs, there is still a theoretical gap, which concerns to the method to determine 

the risk aversion parameters and also the quantity and location of the 𝑁 risk levels 

to be considered. There is not a detailed description of how to determine the 

parameters of underlying utility functions ECP and ECP_G in the literature. The 

parameters are essential elements for the correct capture of the agent’s risk 

preferences and, consequently, for the assessment of the utility function. In this way, 

an inadequate parameter determination procedure, regarding the risk aversion 

parameters, 𝜆’s, can lead to an optimization process where there is excess or lack 

of agent’s exposure to risk, considering the actual risk profile of the agents, what 

can generate inconsistent results and outcomes that are not optimized. 

The main contribution of this work is to provide a methodology to determine 

the underlying utility function parameters, which will allow market agents to 

determine with greater clarity, uniformity, and precision the risk preferences of the 

system participants, which are used to support decisions in various scenarios, 

especially in dual stochastic optimization problems, and also in various applications 

in the management of the national interconnected system. The proposed approach 

is based on interviews with risk managers and hypothetical lotteries through which 

these managers express their preference between two types of investment with 
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varying probabilities of occurrence. It will also be possible to assess the suitability 

of the number of levels chosen, through 50-50 lotteries. Given the great acceptance 

of the models proposed by Street (2010) and Luz (2016) by the Brazilian electricity 

market, especially by the national system operator, there is great potential for 

improving the results of the optimization models that are current being applied for 

the Brazilian system operation, as a result of a more adequate and uniform 

procedure to  determine the aversion parameters risk. 

 

2.2 
Utility theory 

Von Neumann and Morgenstern (1944), Friedman and Savage (1948), and 

more recently Fishburn (2013) have been profoundly influential in shaping utility 

theory and the contemporary understanding of decision-making under risk. These 

eminent scholars have played pivotal roles alongside other distinguished authors in 

advancing these fields (Bassett Jr et al., 2004). While it has faced criticism from 

certain authors, including Rabin (2000), who contends that expected utility theory 

provides an implausible explanation for significant risk aversion when dealing with 

relatively small stakes, it's worth noting that expected utility theory remains one of 

the most robust approaches for risk management and modeling risk aversion. 

One of the main concepts in utility theory is Von Neumann-Morgenstern (vN-

M) utility function, which is defined as a function of the investor's wealth level. For 

each level of investor wealth (𝑊), there is an associated value, defined by its utility 

function 𝑢(𝑊), which is a specific function that reflects the value that the investor 

personally attributes to a given level of wealth.  Utility is a psychic measure and, 

therefore, the utility function is extremely personal and reflects your satisfaction or 

happiness associated with a certain wealth level. 

From the development of the concept of utility function, it was possible to 

establish preferences between random variables, or lotteries, through an analytical 

comparison between them. One random variable is preferable to another if its 

associated utility is greater than the utility associated with the other random 

variable. 

The computation of expected utility is usually made through the Lebesgue 

integral or through the Choquet integral. The latter permit the probability weights 
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associated with the least favorable outcomes to be accentuated, yielding a more 

pessimistic decision criterion (Bassett Jr et al., 2004).  

 

2.2.1 
Risk aversion 

From the utility function it is also possible to evaluate the risk aversion, 

neutrality, and proneness. Mathematically, we use the second derivative of the 

utility function to characterize the risk profile. When the utility function is concave, 

the investor is risk averse, when it is convex, risk prone, and when it is linear, risk 

neutral. The investor may also present different preferences profiles according to 

the level of wealth, being, for example, prone to risk in a certain segment and averse 

to risk in another segment, within the possible values of observed wealth. We can 

define, according to the inequalities of equations 3, 5 and 7, respectively, risk-

averse, neutral, and risk-prone investors. 

The risk-averse investor is psychologically more sensitive to losses than gains 

(equation (3)), starting from an initial reference of wealth 𝑤௢, which means that, a 

decision maker that is risk averse will prefer the expected consequence of a 

nondegenerate lottery to that lottery (equation 4). Considering a 50-50 lottery, the 

investor is risk averse if he prefers the expected consequence to the lottery. The 

decision maker is risk averse if, and only if, his utility function is concave. 

 

 |𝑢(𝑤௢ + 𝑑) − 𝑢(𝑤௢)| ≤  |𝑢(𝑤௢) − 𝑢(𝑤௢ − 𝑑)| (3) 

 

 𝑢[𝐸(𝑥෤)] > 𝐸[𝑢(𝑥෤)] (4) 

 

The risk-neutral investor (equation (5)) is psychologically indifferent to 

losses and gains, starting from an initial reference of wealth 𝑊௢. which means that, 

a decision maker that is risk neutral will be indifferent between the expected 

consequence of a nondegenerate lottery to that lottery (equation (6)). Considering 

a 50-50 lottery, the investor is risk neutral if he is indifferent between the expected 

consequence to the lottery. 

 

 |𝑢(𝑤௢ + 𝑑) − 𝑢(𝑤௢)| =  |𝑢(𝑤௢) − 𝑢(𝑤௢ − 𝑑)| (5) 
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 𝐸[𝑢(𝑥෤)] =  𝑢[𝐸(𝑥෤)] (6) 

 

The risk-prone investor (equation (7)) is psychologically more sensitive to 

gains than losses, starting from an initial reference of wealth 𝑊௢, which means that, 

a decision maker that is risk prone will prefer the lottery to the expected 

consequence of a nondegenerate lottery (equation (8)). Considering a 50-50 lottery, 

the investor is risk prone if he prefers the lottery to expected consequence. The 

decision maker is risk averse if, and only if, his utility function is convex. 

 

 |𝑢(𝑤௢ + 𝑑) − 𝑢(𝑤௢)| ≥  |𝑢(𝑤௢) − 𝑢(𝑤௢ − 𝑑)| (7) 

 

 𝐸[𝑢(𝑥෤)] >  𝑢[𝐸(𝑥෤)] (8) 

 

In Figure 1 we present illustrative utility functions for investors with varying 

risk preferences. These functions represent the relationship between wealth and 

utility for risk-averse, risk-prone, and risk-neutral investors: 

1. Risk-Averse Investor: This investor exhibits a greater aversion to 

losses than an inclination towards gains. Consequently, their utility 

function takes on a concave shape, indicating diminishing marginal 

utility as wealth increases. 

2. Risk-Prone Investor: In contrast, the risk-prone investor is more 

inclined toward gains and less deterred by losses. Their utility 

function exhibits a convex shape, illustrating increasing marginal 

utility as wealth grows. 

3. Risk-Neutral Investor: For the risk-neutral investor, the sensitivity to 

losses and gains is balanced. As a result, their utility function is linear 

or straight, signifying a consistent marginal utility for both gains and 

losses. 

These graphical representations help us visualize how different investor types 

evaluate and respond to risk in their decision-making processes. 
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2.2.2 
Certainty equivalent 

The certainty equivalent (𝑥ො) is a concept widely used in utility theory. Raiffa 

and Keeney (1975) define the certainty equivalent of a lottery 𝐿 as an amount 𝑥ො 

such the decision maker is indifferent between 𝐿 and the amount 𝑥ො for certain. 

Mathematically we can define the certainty equivalent (𝑥ො) by equating the utility of 

the certainty equivalent to the expected value of the utility of the lottery (equation 

(9)): 

 

 𝑢(𝑥ො) = 𝐸[𝑢(𝑥෤)] (9) 

 

where 𝑥෤ denote the uncertain consequences of the lottery (random variable). 

 

The expected consequence of the lottery (𝑋ത) is determined by the equation 

(10) and the expected utility of the lottery (𝐸(𝑢(𝑥෤))) is determined by the equation 

(11):   

 

 
𝑋ത = 𝐸(𝑥෤) =  ෍ 𝑝௜𝑥௜

௡

௜ୀଵ
 

(10) 

Figure 1 – Example of utility functions of risk averse, risk prone and risk neutral 
investors 
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𝐸(𝑢(𝑥෤)) =  ෍ 𝑝௜𝑢(𝑥௜)

௡

௜ୀଵ
 

(11) 

 

where 𝑝௜ is the probability of the consequence 𝑥௜. 

 

The certainty equivalent of a lottery is unique for monotonic utility functions. 

The development of utility theory has been concerned with the development of 

utility functions with monetary consequences, so the terms selling price and cash 

equivalent are found in the literature as the same as certainly equivalent of a lottery 

representing monetary amounts (Raiffa & Keeney, 1975). 

The equation (10) and the equation (11) represent a lottery with discrete 

number of consequences. For lotteries with consequences described by a probability 

density function, 𝑋ത and 𝐸(𝑢(𝑥෤)) are determined by the equation (12) and the 

equation (13), respectively. 

 

 
𝑋ത = 𝐸(𝑥෤) =  න 𝑥𝑓(𝑥)𝑑𝑥 

(12) 

 

 
𝐸(𝑢(𝑥෤)) =  න 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 

(13) 

 

where 𝑓 is the probability density function. 

 

The certainty equivalent can also be obtained using the equation (14). This 

approach to calculate the value of the certainty equivalent can be very useful in 

solving many problems involving utility functions and lotteries: 

 

 𝑥ො = 𝑢ିଵ(𝐸[𝑢(𝑥෤)]) (14) 

 

where 𝑢ିଵ is the inverse function of 𝑢. 
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2.2.3 
Risk premium 

The risk premium of a lottery is defined as the difference between the 

expected consequence of the lottery and its certainty equivalent (equation (15)). 

 

 𝑅𝑖𝑠𝑘 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 = �̅� − 𝑥ො = 𝐸(𝑥෤) − 𝑢ିଵ(𝐸[𝑢(𝑥෤)]) (15) 

 

The risk premium can be interpreted as the amount that the investor is willing 

to give up in relation to the expected value of the lottery (average of possible 

consequences) in order to not have to take the risk of the lottery, receiving a fixed 

value, consequently. 

 

2.2.4 
Insurance premium 

The insurance premium concept is remarkably similar to the certainty 

equivalent concept but refers to a situation where the investor is faced with an 

unfavorable lottery, and he wants to avoid the financial responsibilities of this 

lottery by passing it on to someone else. The insurance premium is therefore the 

negative of the certainty equivalent of the lottery (equation (16)) 

 

 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 = −𝑥ො = −𝑢ିଵ(𝐸[𝑢(𝑥෤)]) (16) 

 

2.2.5 
Strategically equivalent 

The strategically equivalent is another important concept of utility theory. 

Two utility functions, 𝑢ଵand  𝑢ଶ, are strategically equivalent (𝑢ଵ~𝑢ଶ) if we can find 

constants ℎ and 𝑘 > 0, such that (equation (17)): 

 

 𝑢ଵ(𝑥) = ℎ + 𝑘𝑢ଶ(𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. (17) 

 

It is possible to prove that if two utility functions are strategically equivalent, 

then the certainly equivalents for any lottery implied by 𝑢ଵ and 𝑢ଶ are the same. 

The consequence is that, if we two or more strategically equivalent utility functions, 
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their preferences regarding two lotteries, 𝑥෤ଵand 𝑥෤ଶwill be the same. So, if lottery 

𝑥෤ଵis preferred to lottery 𝑥෤ଶ considering utility function 𝑢ଵ, the preference will be 

the same considering utility function 𝑢ଶ or any other since 𝑢ଵ~ 𝑢ଶ. The practical 

implication is that strategically equivalent utility functions will lead to the same 

action strategy for the decision maker. 

 

2.2.6 
Proportional risk aversion 

Another important concept in utility theory concerning risk, described in 

Raiffa and Keeney (1975), is proportional risk aversion. As an example, we have a 

class of investments in which the investor places an 𝑚 proportion of his assets (𝑥଴) 

in a double or nothing bet where the probability of success is  𝑝 and of losing is 

 1 −  𝑝. The result of your investment is described in equation (18): 

 

 
�̃�௠ = ൜

(1 − 𝑚)𝑥଴ + 2𝑚𝑥଴ = (1 + 𝑚)𝑥଴ , 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

   (1 − 𝑚)𝑥଴ ,                                   𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −  𝑝
 

(18) 

 

where �̃� is the result of the lottery where 𝑧 represents a nonnegative random 

variable.  

 

For this type of investment, the authors prove that the optimal investment 

strategy does not depend on the initial amount (𝑥଴) to be invested. They explore 

four classes of utility functions for which the investment plans don’t depend on 𝑥଴ 

and show that the following statements are equivalent: 

i. 𝑥𝑟(𝑥) is constant. 

ii. 𝑢(𝑥)~ log 𝑥 , or  𝑥ଵି௖  for 0 ≠  𝑐 < 1, or − 𝑥ି(௖ିଵ) for c > 1,

or 𝑢(𝑥) = 𝑥. 

iii. The optimum investment plan is independent of the assets. 

 

The expression 𝑥𝑟(𝑥) is called the proportional local risk aversion, 

determined by the equation (19): 
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𝑥𝑟(𝑥) ≅ −𝑥 ቆ

𝑢ᇱᇱ(𝑥)

𝑢ᇱ (𝑥)
ቇ 

(19) 

 

2.2.7 
Parameters of proportional risk aversion utility functions 

When utility functions exhibit constant proportional risk aversion, it is 

possible to determine the appropriate parameter 𝑐 using questions to be answered 

by the decision marker involving certainty equivalent and 50-50 lottery. Assuming 

that the initial wealth of the decision maker is 𝑥଴, we ask him to choose between 

two options: 

a) 𝑥଴ for certain, 

b) A 50-50 lottery with will 

a. Double the initial value to 2𝑥଴  or, 

b. Reduce the wealth to 𝜌𝑥଴ 

If the investor is indifferent between a and b when 𝜌 = 0.5, then 𝑐 = 1 or 

𝑢(𝑥) = log 𝑥. If the investor prefers option a keeping 𝜌 = 0.5 then, 𝑐 > 1. If the 

investor prefers b, then 𝑐 < 1. 

Supposing 𝜌 > 0.5 and 𝑐 > 1, it is possible to calculate 𝑐 by solving equation 

(20).  This equation equates utility of certainty equivalent to the expected value of 

the utility of the lottery. 

 

 
−𝑥଴

ି(௖ିଵ) =  
1

2
 ൣ−𝜌𝑥଴

ି(௖ିଵ) − 2𝑥଴
ି(௖ିଵ)൧ 

(20) 

 2 =  𝜌ି(௖ିଵ) + 2ି(௖ିଵ)  

 

Using the same procedure, for 𝜌 < 0.5 and 𝑐 < 1, we can determine de 

parameter 𝑐 solving equation (21). 

 

 
𝑥଴

ଵି௖ =  
1

2
 ൣ𝜌𝑥଴

ଵି௖ + 2𝑥଴
ଵି௖൧ 

(21) 

 2 =  𝜌ଵି௖ + 2ଵି௖  
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2.3 
Risk measures 

A key component when formulating strategies for action in the face of 

lotteries is the risk management. An investor needs to maximize his result, which is 

usually done in terms of utility, but at the same time he needs to manage the risk to 

avoid losses that are not adequate to his profile. Due to its application in finance 

and many other areas, risk management is a subject with a very well-developed 

literature and the idea of this section is to briefly present the main concepts of Value-

at-Risk and Conditional Value-at-Risk measures that are useful for the understand 

of performance measures, ECP and ECP_G functionals, that will be presented in 

the following section. 

 

2.3.1 
Value-at-Risk 

An extremely popular measure in risk management, mainly due to its 

simplicity and ease of application, is the Value-at-Risk (VaR). The VaR value 

represents the maximum loss, in percentage terms of the possible scenarios, that the 

investor is willing to face, given an investment.  It is expressed in terms of 𝛼, which 

represents the 1 − 𝛼 worst case scenarios that the investor is unwilling to accept, 

so the unacceptable losses will not exceed 1 − 𝛼 scenarios.  

For a given lottery and a given period 𝑡, if the investor defines 𝛼 value, for 

example 95%, that corresponds to a 𝑣 value for VaR, then there is a probability of 

1 − 𝛼 (5%) that the lottery return is below 𝑣 within a period 𝑡. The calculation of 

the VaR is done in a simple way, through the percentile of the distribution of the 

possible returns once the investor knows the distribution returns.  

A convenient definition of VaR and CVaR measures – CVaR will be discussed 

in the next topic – for the use as a component of preference functional is proposed 

by Street (2010). The measure is calculated for the revenue context and assumes a 

probability space (Ω, Γ, 𝑃). The revenues are stochastic and defined as Γ- 

measurable functions 𝑅: Ω → Q that map elements from Ω (all possible states) to Q 

(set of possible revenue outcomes), where Q ⊂  ℜ. The cumulative probability 

function of a random revenue 𝑅 is shown in equation (22): 
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 𝐹ோ(𝑟) = 𝑃 {𝜔 ∈ Ω |𝑅(𝜔) ≤ 𝑟}      ∀𝑟 ∈ 𝑄 (22) 

 

where 𝑟 is the revenue of the asset or portfolio. 

 

The VaR, that denotes the quantile function, for the revenue context can be 

mathematically defined as (equation (23)): 

 

 𝑉𝑎𝑅ఈ(𝑅) = 𝐹ோ
ିଵ(1 −  𝛼)  

= 𝑖𝑛𝑓{𝑟 ∈ 𝑄 |𝐹ோ(𝑟) ≥ (1 − 𝛼)}  

(23) 

 

Despite being a very simple measure to calculate, when the distribution of 

possible outcomes is known, VaR has some problems, such as not being a coherent 

risk measure because it does not fulfill the axiom of subadditivity (Acerbi & Tasche, 

2002) and it does not provide information about the loss when it occurs. Jorion 

(1996) points out that VaR is a necessary but not a sufficient measure, which means 

that it is recommended to use VaR along with other risk measures and risk 

management procedures to achieve ideal results when managing risky investments 

or portfolios. 

 

2.3.2 
Conditional Value-at-Risk 

One of the main problems of VaR as a measure of risk is the lack of desirable 

properties, such as differentiability and convexity, making it difficult to implement 

in mathematical programming models, and not present the subadditivity property, 

so the VaR of a combination of random variables may be greater than the sum of 

the VaR of each of them, which makes the VaR a non-coherent risk measure 

(ROCHA, 2013). For coherent risk measure that presents subadditivity, portfolio 

diversification should lead to risk reduction while, for measures which violate 

subadditivity, diversification can produce an increase in the measure of risk even 

when partial risks are triggered by mutually exclusive events (Acerbi et al., 2001). 

Another problem of VaR measure is that it does not provide information about 

the magnitude of loss, such as its expected value once it occurs beyond the cut off 
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value. Thus, distributions with quite different shapes may have the same VaR value. 

One investment could have high depth events while the other not. The former could 

lead the investor or company to bankruptcy, while the latter would not, however, 

would have the same measure of associated risk, which could lead to an erroneous 

assessment of risks, when comparing the two investments.  

The Conditional Value-at-Risk (CVaR), also known as expected shortfall (ES) 

(Acerbi & Tasche, 2002) and tail conditional expectation (Artzner et al., 1999), is a 

measure that indicates the amount of tail risk and provides the information of the 

weighted average of the losses in the tail of the revenue distribution, beyond the 

Value-at-Risk (VaR) critical value, for a specific period. CVaR can also be written 

as a particular case of Choquet Expected Utility defined as the negative Choquet 

𝜚జഀ
 (equation (24)) expected return (Bassett Jr et al., 2004). 

 

 
𝜚జഀ

(𝑋) = − න 𝐹ିଵ(𝑡)𝑑𝑣(𝑡)
ଵ

଴

=  − 𝛼ିଵ න 𝐹ିଵ(𝑡)𝑑𝑡
ఈ

଴

 
(24) 

 

where 𝑣(𝑡) = 𝑚𝑖𝑛 ቄ
௧

ఈ
, 1ቅ . 

 

The risk measure CVaR has become an well-known measure in the last two 

decades, after the development of an approach for portfolio optimization for 

financial instruments proposed by Rockafellar and Uryasev (2000), whose 

objective is the minimization of CVaR, through a technique that calculates VaR and 

optimizes the CVaR simultaneously. 

The CVaR is a coherent risk measure (Artzner et al., 1999) and tends to be 

more pessimist than VaR as CVaR incorporates even the most catastrophic, high 

depth, events into the calculation. CVaR can be determined, for the revenue context, 

as shown in equation (25) (Street, 2010) and represents the conditional expectation 

of portfolio losses greater than VaR measure. 

 

 𝐶𝑉𝑎𝑅ఈ(𝑅) =  𝐸[𝑅|𝑅 ≤ 𝑉𝑎𝑅ఈ] (25) 

 

where 𝐸[. |. ] is the expectation operator conditioned to a given set. The operator is 

determined as shown in equation (26), for a set A ⊆  Q. 
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𝐸[𝑅|𝑅 ∈ 𝐴] = න 𝑟 

𝑑𝐹ோ(𝑟)

𝑃 {𝜔 ∈ Ω |𝑅(𝜔) ∈ 𝐴}
 

(26) 

 

The Figure 2 shows an example of VaR and CVaR configuration for a smooth 

cumulative function and a given 𝛼 quantile. 

 

Source: Street (2010) 

 

The  Figure 3 shows two distributions A and B with quite different shapes, 

and which have the same VaR risk measure. Using the VaR measure alone, we could 

conclude that these are two investments with the same risk. However, the B 

distribution has a longer left tail, with a greater presence of high-depth, catastrophic 

events. The CVaR manages to capture this difference, indicating a greater risk for 

distribution B, compared to A. 

Figure 2 – Example of VaR and CVaR for a smooth revenue cumulative probability 
function 
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Source: Street (2008) 

 

2.3.3 
Coherent measures of risk 

The coherent measures of risk have desirable characteristics for risk 

measurement, represented by axioms. Artzner et al. (1999) describe the axioms that 

represents a coherent risk measure. A risk measure satisfying the axioms of 

translation invariance, subadditivity, positive homogeneity, and monotonicity is 

coherent. 

Let’s consider Ω the set of outcomes of an experiment and compute the final 

net worth of a position for each of its elements, a random variable denoted by 𝑋(𝑤). 

The indicator function of state is 𝑤. Consider 𝛿 be the set of all risks, that is the set 

of all real-valued functions on Ω. A measure of risk 𝜌(𝑋) is a mapping from 𝛿 into 

ℝ. 

The axion T is the translation invariance, shown in equation (27), which 

means that adding the sure initial amount 𝛼 to the initial position and investing it in 

the reference instrument simply decreases the risk measure by 𝛼. 

 

 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈  𝛿,  𝜌(𝑋 + 𝛼) ≤ 𝜌(𝑋) − 𝛼 (27) 

 

Figure 3 – Example of two distributions with the same VaR metric and different CVaR 
metrics 
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The axiom S is the subadditivity, shown in equation (28). Subadditivity is a 

property that indicates that the total risk measure of a set of assets is less than or 

equal to the risk measure of the individual sum of assets in the portfolio, so that no 

additional risk is created when mixing investments. 

 

 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑋ଵ 𝑎𝑛𝑑 𝑋ଶ  ∈  𝛿, 𝜌(𝑋ଵ + 𝑋ଶ) ≤ 𝜌(𝑋ଵ) + 𝜌(𝑋ଶ) (28) 

 

The axiom PH is the positive homogeneity, shown in equation (29), implies 

that one increases the size of each portfolio position the portfolio risk increases in 

equal proportion. 

 

 𝐹𝑜𝑟 𝜆 ≥ 0 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑋 ∈  𝛿, 𝜌(𝜆𝑋) ≤ 𝜆𝜌(𝑋) (29) 

 

The axiom M is the monotonicity, shown in equation (30). The interpretation 

of this axiom is that if the gains in portfolio X are smaller than those in portfolio Y 

for all possible scenarios, then the risk in portfolio X is greater than in portfolio Y. 

 

 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑋 𝑎𝑛𝑑 𝑌 ∈  𝛿 𝑤𝑖𝑡ℎ 𝑋 ≤ 𝑌 𝑤𝑒 ℎ𝑎𝑣𝑒 𝜌(𝑋) ≥ 𝜌(𝑌) (30) 

 

2.4  
Decisions under uncertainty using CVaR and expected utility 

Most works involving expected utility theory and the CVaR coherent risk 

measure at a certain point were divided into two strands that aimed to build decision 

models under uncertainty. While a group of finance researchers developed towards 

the evolution of controlling the risk of the positions taken, the other group focused 

on the development of economics works through the theory of utility. None of the 

purposes of the research groups is more or less relevant and they are connected by 

a common objective, which is to characterize the agent risk profile of so that he is 

able to make decisions under uncertainty (Street, 2008).  

Street (2008) proposes a methodology to integrate the two approaches, 

through the creation of a piecewise linear function that derives from a set of risk 

constraints, which aims to control the CVaR for different significance levels. The 
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strategy is to formulate a problem of expected net revenue maximization, subject to 

𝑀 CVaR constraints (equation (31)). 

  

 𝐶𝑉𝑎𝑅ఈ೔
(𝑅) ≥ 𝑅௜

௠௜௡, 𝑖 = 1, … , 𝑀 (31) 

 

where  𝑅(𝑥, 𝜉) is the stochastic net revenue for the contracted amount (𝑥) and other 

uncertainty factors (𝜉). 

 

The maximization problem can be formulated as shown in the equation (32), 

equation (33), equation (34), equation (35) and equation (36). 

 

 𝑀𝑎𝑥(௫,௕,௭) ෍ 𝑝௦ ∙ 𝑅(𝑥, 𝜉௦) 
௦

 (32) 

Subject to: 

 

 𝛽௜,௦ ≤ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑀 𝑎𝑛𝑑 𝑠 = 1, … , 𝑆 (33) 

 

 𝛽௜,௦ ≤ (1 − 𝛼௜)
ିଵ ∙ [𝑅(𝑥, 𝜉௦) − 𝑧௜]  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑀 𝑎𝑛𝑑  

𝑠 = 1, … , 𝑆  

(34) 

 

 𝑧௜ + ෍ 𝑝௦ ∙ 𝛽௜,௦ 
௦

≥  𝑅௜
௠௜௡ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑀 (35) 

 

 𝐺 ∙ 𝑥 ≤ 𝑑 (36) 

 

where 𝛼௜ ≥ 𝛼௜ାଵ, 𝑅௜
௠௜௡ ≤ 𝑅௜ାଵ

௠௜௡   for all 𝑖 = 1, … , 𝑀. 

 

Inserting in the objective function a penalty 𝜆 , the new objective function is 

(equation (37)): 

 

 𝐹௢௕௝ = ෍ 𝑝௦ ∙ 𝑅(𝑥, 𝜉௦)
௦

+ ෍ 𝜆௜ ∙ ൬𝑧௜ + ෍ 𝑝௦ ∙ 𝛽௜,௦ 
௦

−  𝑅௜
௠௜௡൰ 

௜
 (37) 
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= ෍ 𝑝௦ ∙ ൥𝑅(𝑥, 𝜉௦) +  ෍ 𝜆௜ ∙ 𝛽௜,௦

௜

൩
௦

+ ෍ 𝜆௜ ∙ ൫𝑧௜ −  𝑅௜
௠௜௡൯ 

௜
 

 

 

The objective function is a piecewise function of net revenue function 

𝑅(𝑥, 𝜉௦) and it has 𝑀 + 1 segments. The coefficients (𝑎௞, 𝑏௞), of piecewise utility 

linear function implicit to the net revenue maximization problem is expressed in the 

equation (38) and equation (39). The utility function for a given net revenue value 

𝑟 is shown in equation (40): 

 

 𝑎௞ = 1 + ෍ 𝜆௜ ∙ (1 − 𝛼௜)
ିଵ

௜:௞ஸ௜ஸெ
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑀 + 1 (38) 

 

 𝑏௞ = − ෍ 𝜆௜ ∙ (1 − 𝛼௜)
ିଵ ∙  𝑧௜

∗ 
௜:௞ஸ௜ஸெ

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑀 + 1 (39) 

 

 𝑈(𝑟) = 𝑟 ∙ ൬1 + ෍ 𝜆௜ ∙ (1 − 𝛼௜)
ିଵ

௜:௞ஸ௜ஸெ
 ൰

− ෍ 𝜆௜ ∙ (1 − 𝛼௜)ିଵ ∙  𝑧௜
∗ 

௜:௞ஸ௜ஸெ
 

(40) 

 

where  𝑧௜
∗ = 𝑉𝑎𝑅ఈ೔

[𝑅(𝑥, 𝜉௦)], 𝑖 = 1, … , 𝑀. 

 

The piecewise linear utility function, implicit to the maximization problem is 

shown in Figure 4. This function is a classical Neumann-Morgenstern function (vN-

M) and does not depend on the evaluated stochastic variable (Street, 2008). 
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Source: Street (2008) 

 

2.4.1  
Extended CVaR Preference (ECP) Functional  

The Extended CVaR Preference (ECP) Functional was propose by Street 

(2010) and has become largely adopted in Brazilian electricity market for a variety 

of problems, mainly dual stochastic optimization problems and currently is the 

objective function that is used by the national system operator in the optimization 

of the hydrothermal dispatch. The inclusion of this functional as an objective 

function in the national system occurred in August 2013.  

The intuition behind the functional is to weigh the expected gains with the 

average losses above the critical point, arriving at an optimal solution so that the 

functional can simultaneously optimize the revenue, represented by the expected 

value of the net revenue, and manage the risk involved in investment, represented 

by CVaR metric. For two lotteries with the same CVaR metric for 𝛼 and different 

expected revenue values (unconditioned expectation), the agent would choose the 

one which provides the greatest expected value, as the risk metric is the same for 

both (Street, 2010). On the other hand, if two lotteries have the same expected 

Figure 4 – Piecewise linear utility function implicit to the maximization problem 
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values, the investor would choose the one that has the lower risk of losses beyond 

the critical value. 

Extended CVaR Preference (ECP) is defined as (equation (41)): 

 

 Φఈ,ఒ(𝑅) =  𝜆 ∙ 𝐶𝑉𝑎𝑅ఈ + (1 − 𝜆) ∙ 𝐸[𝑅];  𝜆 

∈  [0,1] 

(41) 

 

The ECP probability-dependent expected utility form is shown in equation 

(42): 

 

 Φఈ,ఒ(𝑅) = 𝜆 ∙ 𝐸{𝑧∗(𝛼, 𝑅) − [𝑅 − 𝑧∗(𝛼, 𝑅)]|  ି/(1 − 𝛼)}

+ (1 − 𝜆) ∙ 𝐸[𝑅] 

(42) 

 

The underlying utility function for the functional and probability-dependent 

expected utility form of the ECP functional are shown in equation (43) and equation 

(44), respectively: 

 

 Uఈ,ఒ(𝑟, 𝐹ோ) = 𝜆 ∙ 𝐸൛𝐹ோ
ିଵ(1 − 𝛼) − ൣ𝑟 − 𝐹ோ

ିଵ(1 − 𝛼)൧ห  ି/(1 − 𝛼)ൟ

+ (1 − 𝜆) ∙ 𝑟 

(43) 

 

 Φఈ,ఒ(𝑅) = 𝐸൛Uఈ,ఒ [𝑅, 𝐹ோ(. )]ൟ (44)  

 

The Figure 5 provides a graphical visualization of the utility function 

(equation 43) for a fixed revenue distribution 𝐹ோ(. ). There are two separated 

segments 𝑟 ≤ 𝐹ோ
ିଵ(1 − 𝛼) and 𝑟 > 𝐹ோ

ିଵ(1 − 𝛼). Note that 𝑟 is continuous on 𝑟 =

𝐹ோ
ିଵ(1 − 𝛼). 
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Source: Street (2010) 

 

2.4.2  
Generalized Extended CVaR Preference (ECP_G) Functional 

The generalization of the ECP functional (equation (45)), described in the 

previous topic, was proposed by Luz (2016), for a period and 𝑁 reference points 

and its denomination is ECP_G. The motivation behind this generalization is rooted 

in the idea that investors may exhibit varying degrees of risk aversion across distinct 

risk ranges, each characterized by the CVaR metric. 

 

 
𝐸𝐶𝑃

ఈ,ఒ
=  𝐸[𝑢(𝑥෤)] = 𝜆଴𝐸(𝑥෤) + ෍ 𝜆௡𝐶𝑉𝑎𝑅ఈ೙

ே

௡ୀଵ
; 

(45) 

 
𝜆௡ ≥ 0 𝑎𝑛𝑑 ෍ 𝜆௡

ே

௡ୀଵ
= 1 

 

 

The ECP_G functional is computed from the expected value of the utility 

function shown in equation 46, and is capable to capture 𝑁 risk levels through 𝑁 +

1 linear utility functions that cover all values in ℝ. 

 

 

 

Figure 5 – Example of local piecewise linear utility function 
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𝑼𝒕𝒊𝒍𝒊𝒕𝒚 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑼: ℝ → ℝ 

 

 

𝑈(𝑥)

⎩
⎨

⎧𝜆଴𝑥 +  ෍ 𝜆௜𝑉𝑎𝑅ఈ೔

ே

௜ୀଵ
+  ෍

𝜆௜

(1 − 𝛼௜)
൫𝑥 − 𝑉𝑎𝑅ఈ೔

൯;
௡

௜ୀଵ
 (𝑎)

𝜆଴𝑥 +  ෍ 𝜆௜𝑉𝑎𝑅ఈ೔
;

ே

௜ୀଵ
 (𝑏)

 

 

(𝑎): 𝑥 ∈  ൧𝑉𝑎𝑅ఈ೙శభ
; 𝑉𝑎𝑅ఈ೙

൧, 𝑥 ∈ [1; 𝑁] ⊂ ℕ, 𝑉𝑎𝑅ఈಿశభ
→  −∞   

(𝑏): 𝑥 ∈  ]𝑉𝑎𝑅ଵ; 𝑉𝑎𝑅଴], 𝑉𝑎𝑅ఈబ
→  +∞ 

(46) 

 

Where ∑ 𝜆௜ = 1௜  , 𝜆௜ ≥ 0, 𝑥 ∈  [0, 𝑁], 𝛼௜ ⊂  ]0,1[ , 𝛼ேାଵ = 1, 𝛼଴ = 0. 

 

The  Figure 6 shows an example of the utility function from equation 46 and 

𝑁 = 2. The intersection of the lines occurs at the points where 𝑥௜ = 𝑉𝑎𝑅ఈ೔
. Each 

linear function of the piecewise function is defined by 𝜆଴ for 𝑥 ∈  ]𝑉𝑎𝑅ଵ; 𝑉𝑎𝑅଴] 

and  𝜆଴ + ∑
ఒ೔

(ଵିఈ೔)
௡
௜ୀଵ  for 𝑥 ∈ ൧𝑉𝑎𝑅ఈ೙శభ

; 𝑉𝑎𝑅ఈ೙
൧ : 

 

Source: Luz (2016) 

 

Figure 6 – Example of underlying utility function of ECP_G functional for N=2 
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The underlying utility function of ECP_G (equation (46)) is not a classical 

Von Neumann-Morgenstern utility function since it depends on the revenue 

distribution (Luz, 2016). It is continuous in  ℝ and as consequence it is possible to 

integrate the cumulative probability function 𝐹(𝑥) through the probability space.  

The investor's risk profile is reflected in the utility function through the 

lambdas 𝜆௜ risk aversion parameters that change the slope of each of the 𝑁 + 1 

segments that represent the function. 

The functional ECP_G is obtained from the computation of expected utility 

and is a coherent risk measure as it is a convex combination of 𝐶𝑉𝑎𝑅ఈ, where 

∑ 𝜆௜. = 1. Oliveira (2009) demonstrates that for a family of coherent risk measures 

{𝜌ఛ} 𝜏 ∈ Τ, any convex combination 𝜌 is also a coherent measure of risk (equation 

(47)). 

 

 𝜌 = ෍ 𝜆ఛ𝜌ఛ

ఛ∈஋

 

෍ 𝜆ఛ

ఛ∈஋

= 1 𝑎𝑛𝑑  𝜆ఛ ≥ 0 

(47) 

 

The certainly equivalent and the risk premium of lotteries can be obtained 

from the utility function from equation 46, and are shown in equations (48) and 

(49), respectively. 

 

 
𝐸𝑞 = 𝑈ିଵ(𝐸[𝑈(𝑥)]) =  𝑈ିଵ ൭𝜆଴𝐸[𝑥෤] + ෍ 𝜆௡𝐶𝑉𝑎𝑅ఈ೙

ே

௡ୀଵ

൱ 
(48) 

 

 𝑅𝑝 = 𝐸[𝑥෤] − 𝐸𝑞  (49) 

 

The risk premium demonstrates that the function presents global risk aversion 

although locally it is composed of 𝑁 linear functions and each linear function 

segment is risk neutral. So, it is not possible to calculate the Arrow-Pratt classical 

risk aversion (Arrow, 1965; Pratt, 1978) measure (𝛾 = 𝑈ᇱᇱ(𝑥) 𝑈ᇱ(𝑥)⁄ ) as the utility 

function is not differentiable for the full set of possible outcomes, and it is not 

differentiable at the points where the function's slope changes. Thus, the aversion 
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occurs from one segment to another and can be computed as shown in equation (50) 

(Luz, 2016) 

 

 
𝛾௡ = −

(𝑠௡ − 𝑠௡ାଵ)

𝑠௡ାଵ
 

𝑠଴ = 𝜆଴  and 

𝑠௡ =  𝜆଴ + ෍
𝜆௜

(1 − 𝛼௜)

௡

௜ୀଵ

 

𝛾௡ =
𝜆௡ାଵ

1 − 𝛼௡ାଵ
× ൭𝜆଴ + ෍

𝜆௜

(1 − 𝛼௜)

௡ାଵ

௜ୀଵ

൱

ିଵ

 

(50) 

 

where 𝑠௡ is the slope each of N segments of function and 𝜆଴ is the slope of 

𝑠଴segment. 

 

2.4.3  
Parameter estimation: objective and subjective approaches 

The determination of the utility function weight parameters is among the most 

important steps in risk management since the allocation decisions are compromised 

when the risk parameters do not correctly reflect the investor preferences. 

Techniques for estimating the function parameters have been widely discussed in 

the literature and are divided manly in two groups: subjective and objective 

approaches. Subjective approaches use opinion from experts and decision makers 

on the criteria weight to determine the parameters while objective approaches uses 

actual data from the decision matrix and disregard the opinion of expert and 

decision makers (Žižović et al., 2020).  

Keeney and Raiffa (Keeney & Raiffa, 1976) describe a subjective approach 

to estimate the parameter of the utility function using 50-50 lotteries that is very 

intuitive and practical. The decision maker just needs to choose between two 

equally likely consequences each time. The process is recursive and through it the 

certainty equivalent and the parameters of the functions are estimated. The method 

that uses the certainty equivalent compared to lotteries has many variants, some of 

them use probabilities that differ from 50% for each outcome, keeping the sum of 

probabilities equal to 100%. 
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The Simple Multi-Attribute Rating Technique (SMART) (Edwards, 1977) 

and other improved variants as SMARTS and SMARTER (Edwards & Barron, 

1994) are another group of techniques widely explored in the literature that use the 

subjective approach to estimate the function parameters. SMART is a linear additive 

model and a multi-criteria decision method. It consists of a set of criteria and 

weights that permit comparison, allowing the decision maker to assess the 

alternatives and take the optimum decisions (Siregar et al., 2017). The equation (51) 

shows the multilinear model function model of SMART: 

  

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ෍ 𝑤௝ ∙ 𝑢௜௝

௞

௝ୀଵ

 
(51) 

 

where 𝑤௝ is the weighted value 𝑗 of 𝑘 criterion and  𝑢௜௝is the alternative utility value 

𝑖 on criterion 𝑗.  

 

The pairwise comparison methods are another type of subjective approach 

based on pairwise comparison, exclusively. One of the first developments of this 

method that was observed in the literature occurred in 1927, by Thurstone 

(Thurstone, 1994). The idea behind the method is to let the decision maker, who 

can be a person or a team, establish relative importance between two alternatives 

that are presented to them at a time, so that, in the end, it is possible to establish the 

relative significance of all alternatives. 

One of the most popular pairwise comparison methods used is the Analytical 

Hierarchy Processes (AHP), proposed by Saaty (T. L. Saaty, 1980) widely applied 

in multicriteria decision making.  The AHP is a nonlinear framework that take 

several factors into consideration, which carries both deductive and inductive 

thinking, and can make numerical tradeoffs to support the conclusions. It is method 

that allows the establishment of measures for social or physical domains (R. W. 

Saaty, 1987). The AHP model has special concern with consistency and 

measurements were developed and tested to estimate the level of consistency 

obtained. 

The AHP method can also be applied to discrete and continuous cases and 

dominances matrices are applied to the former and kernels of Fredholm operators 
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to the latter (T. L. Saaty & Vargas, 1987). The main idea of the method is to use 

pairwise comparison to determine the relative weights of each criterion using a 

nine-level scale. Them, for each alternative, it is calculated a value that reflects the 

weight of each criterion and the specific values assigned to the alternative (Table 

2). 

 

Intensity of  
importance 

Definition 

1 Equal importance 
2 Weak or slight 
3 Moderate importance 
4 Moderate plus 
5 Strong importance 
6 Strong plus 

7 
Very strong or demonstrated 
Importance 

8 Very, very strong 
9 Extreme importance 

Reciprocals of 
above 

If activity 𝑖 has one of the above nonzero numbers assigned to it 
when compared with activity 𝑗, then 𝑗 has the reciprocal value when 
compared with 𝑖 

Rationals Ratios arising from the scale 

Table 2 – AHP fundamental scale of absolute numbers 

Source: Saaty (2004) 

 

The decision to utilize subjective methods often stems from the prevalent lack 

of readily available observable data in numerous scenarios, or the inherent 

challenges associated with acquiring and processing such data. In these scenarios, 

the utilization of subjective models, which rely on the expertise of decision-makers, 

can prove to be highly appropriate. Conversely, objective approaches rely solely on 

data to estimate parameters, obviating the need for input from experts and decision-

makers. In such cases, criteria weights are derived exclusively from the criteria 

values associated with alternatives. Objective approaches prioritize the analysis of 

the decision matrix, which portrays the values of the considered alternatives in 

relation to a defined set of criteria. (Žižović et al., 2020). 

One of the main methods that uses objective approach to support decision 

making is the Criteria Importance Through Intercriteria Correlation (CRITIC) 

method. CRITIC is a method for the determination of objective weights of relative 

importance in Multi Criteria Decision Making (MCDM) problems and is based on 
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analytical investigation of the evaluation matrix to extract the information of the 

evaluation criteria (Diakoulaki et al., 1995). The multicriteria problem can be 

written as shown in equation (52): 

 

 𝑀𝑎𝑥{𝑓ଵ(𝑎), 𝑓ଶ(𝑎), … , 𝑓௠(𝑎)|𝑎 ∈ 𝐴} (52) 

 

where 𝐴 is a set of finite alternatives and 𝑚 is a system of evaluation criteria 𝑓௝. 

 

The membership function 𝑥௝ maps the values of 𝑓௝ to the interval [0,1]. The 

value 𝑥௔௝ (equation (53)) represents the degree to which the alternative 𝑎 is close 

to the ideal value 𝑓௝௕ (best performance in criterion) and far from 𝑓௝௪ (worst 

performance in criterion). The initial matrix is, therefore, converted into a matrix of 

relative scores.  

 

 
𝑥௔௝ =

𝑓௝(𝑎) − 𝑓௝௪

𝑓௝௕ − 𝑓௝௪
 

(53) 

 

For each criterion 𝑗 , a vector 𝑥௝ (equation (54)) is generated denoting the 

scores of all 𝑛 alternatives. The standard deviation 𝜎௝  is also computed and 

represents the contrast intensity for the criterion and is a measure of the criterion 

value to the decision-making process. 

 

 𝑥௝ = (𝑥௝(1), 𝑥௝(2), … , 𝑥௝(𝑛)) (54) 

 

Then a 𝑚 ×  𝑚 matrix is generated using the linear correlation between the 

vectors 𝑥௝ and 𝑥௞ for the value of 𝑟௝௞ element. The measure of conflict created by 

criterion 𝑗 with respect to the rest of criteria is measure according to equation (55): 

 

 
෍(1 − 𝑟௝௞)

௠

௞ୀଵ

 
(55) 
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The information of MCDM problem 𝐶௝ (equation (56)) is related to contrast 

(𝜎௝) and conflict (equation (55)). 

 

 
𝐶௝ = 𝜎௝ ∙ ෍(1 − 𝑟௝௞)

௠

௞ୀଵ

 
(56) 

 

The objective weighs 𝑤௝ are obtained according to equation (57). The higher 

is 𝐶௝ more information is transmitted by criterion 𝑗 and higher is the importance of 

𝑤௝ for the decision-making process. 

 

 
𝑤௝ =

𝐶௝

∑ 𝐶௞
௠
௞ୀଵ

 
(57) 

 

There are other well-known objectives methods, as the entropy method 

(Shannon, 1948), FANMA (Ma et al., 1999) and CRITIC variations as CRITIC-M 

(Žižović et al., 2020) and all of them rely only on data to define the weight of the 

functions and do not need the opinion of decision makers or experts. 

 

2.5 
Parameter estimation: ECP and ECP_G functionals 

 The parameters estimation for the ECP (ECP_G for 𝑁 = 1) functional is 

extremely important for the Brazilian electricity sector since the national integrated 

system uses the ECP functional to optimize several system processes. The 

settlement price of the differences is calculated from the optimization of the 

hydrothermal dispatch for the Brazilian electrical system, considering a horizon of 

up to 5 (five) years and the optimization objective function (equation (58)) is 

defined, for each stage, since 2013, as the sum of 75% of expected price and 25% 

of 𝐶𝑉𝑎𝑅ହ଴% (Luz, 2016). 

 

 

 

𝐸𝐶𝑃ହ଴%,ଶହ% =  (0.75)𝐸[𝑥෤] + (0.25)𝐶𝑉𝑎𝑅ହ଴% (58) 
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The risk aversion parameters were defined through a public audience 

(ANEEL, 2013) in 2013, the process of defining the risk aversion parameters 𝛼 and 

𝜆  was subject to several criticisms, as non-active participation of sector agents since 

the beginning of this process. The process was carried out through the generation 

of scenarios for which the 𝛼 and 𝜆 values were obtained by trial and error, since 

there was no established procedure in the literature for estimating the parameters of 

ECP functional underlying utility function. 

The definition of parameters for the Brazilian electricity sector has an 

additional difficulty, as their implementation in the NEWAVE optimization 

software is made through a multistage problem, so for each stage there is a set of 

scenarios, an expected value 𝐸[𝑥෤] and a calculated 𝐶𝑉𝑎𝑅. 

Luz (2016) suggested the use of AHP method and its 9-point scale and showed 

an example of 2 levels of risk, one representing a moderate level (20%, acceptable) 

and the other an extreme level (5%, not acceptable). The moderate level could be 

represented by the expected result of the worst 20% scenarios and the extreme risk 

of the worst 5%. 

The AHP method, despite having great potential decision-making problems 

under uncertainty, can be difficult to implement, especially considering the 

dynamics of the electricity sector, where the participation of several agents in the 

definition of risk parameters is required. There is also the possibility of generating 

outcomes with low consistency, which would require the revision of the assigned 

value, according to the 9-point scale that could make the process even more time 

consuming. There is, therefore, a challenge to develop a methodology to determine 

the parameters that is simple and easy for the agents to understand, as they need to 

participate in the process and validate the risk aversion parameters obtained. 

First, we need to understand whether it would be adequate to use an objective 

or subjective method to determine the parameters. An objective method would be 

quite convenient as it would avoid any kind of bias and the need for consensus 

among the different decision makers who participate in the process, since the data 

themselves would indicate the ideal weights for the parameters. 

The use of an objective method requires, however, the data to be large and 

varied so that it makes possible to investigate and to establish adequate correlations 

and extract the information of the evaluation criteria based on analytical 

investigation of the evaluation matrix. unfortunately, the existing data set today 
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does not allow this approach. The data present until today represent the application 

of the same parameters for 𝛼 and 𝜆  defined in since 2013, 50% and 25%, 

respectively, and there is not a variety of different decisions and results that allow 

the creation of an investigation matrix for objective determination of the criteria. 

The subjective alternative therefore becomes the recommended alternative. 

Among the subjective approaches, a well-established technique for estimating 

the parameters of the utility function and, consequently, the ECP_G functional 

parameters, is the use of hypothetical lotteries through which the decision maker 

indicates the value to which he becomes indifferent between the lottery and an exact 

amount (certainly equivalent). This approach will be detailed further on, but before 

that, it is necessary to discuss the 3 types of estimation that are involved in the 

parameterization of the ECP_G, which require different strategies. 

The parameters estimation is divided into three decisions (Luz, 2016): 

 Determination of the number of levels 𝑁 

 Determination of 𝛼௜’s 

 Estimation of 𝜆௜’s 

 

2.5.1 
Determination of the number of levels 𝑵 and estimation of 𝜶’s 

The ECP_G functional and its piecewise underlying utility function can be 

interpreted as an approximation of the decision maker preferences. In studies 

involving the estimation of the utility function, usually, the assessed function is 

smooth (Keeney & Raiffa, 1976) and the change in slope along the curve is gradual. 

There are no non-differentiable points where, abruptly, there is a change in the slope 

of the linear function, that should be empirically observed, as occurs in a piecewise 

linear function between each segment. However, from a practical point of view, 

choosing a piecewise linear function to represent the investor's utility function is 

quite adequate. This approach gives a lot of flexibility in the shape of the utility 

function and, at the same time, from an optimization point of view, it also allows 

the adoption of simple and efficient maximization strategies, which is desirable 

from a computational perspective. 

The greater the number of linear functions (𝑁 + 1), the better is the adherence 

to the investor's actual preferences, as the overall shape becomes closer to a smooth 



47 
 

curve. On the other hand, an exceptionally large number of levels 𝑁 implies a 

greater effort to capture the different degrees of risk aversion within each segment 

and it may become difficult for the decision maker and the analyst or researcher to 

capture very subtle changes from one segment to another. 

Thus, there is a balance between the level of approximation of the decision 

maker utility function and the practicality and viability of assessing the segments 

of the utility function that needs to be achieved. Street (2008) suggests using at least 

5 levels to define the agent's preferences. 

The definition of 𝛼’s, in the same way, also impacts on the assessment 

accuracy the underlying utility function. The choice of 𝛼’s should be done to 

capture the segments in which there is little or no change in the decision maker's 

risk preferences i.e., segments where empirical data points converge towards a 

linear trend. 

Many companies have formalized loss limits, such as unacceptable losses, 

undesirable losses, and acceptable losses, which may be, for example, referring to 

𝑉𝑎𝑅଼଴%, 𝑉𝑎𝑅ଽ଴% and 𝑉𝑎𝑅଼ହ%, respectively and these limits can be used as initial 

reference values for the 𝛼’s. 

Keeney and Raiffa (1976) point out that choosing an utility function is, 

somewhat, of a heuristic search process, and there is no clear cut procedures for 

solving the problem. The goal is to find a utility function which satisfies almost all 

the constrains and is not grossly incompatible with the others. This process can, 

therefore, lead to different outcomes for the utility function, but all equally 

appropriate for the decision maker to operate. This occurs mainly due to the 

subjectivity involved in the process. A suggested approach for defining the number 

of levels 𝑁 and  𝛼’s, for a single agent, is shown as follows: 

 

 Use the 5 levels suggested by Street (2008) as a starting point. 

 If there are formalized milestones for losses use these milestones even 

if there are more than 5. 

 If there are less than 5 loss milestones, use those milestones plus the 

amount to achieve 5 levels, filling in the largest remaining segments 

evenly spaced. 
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 If there are no loss milestones, use 5 levels as starting points. As 

extreme losses are particularly important to be controlled, it is 

suggested to use more 𝛼 levels close to extreme losses such as 𝛼 levels 

80% 90% and 95%. For 5 levels, possible 𝛼 values to be used are: 

40%, 65%, 80%, 90% and 95%. The value of 99% is not suggested, 

as well as no value with a scale below 5%, as some studies, such as 

Spetzler (1968), found that decision makers cannot differentiate 

values lower than 5%. 

 To check if the number of levels 𝑁 and 𝛼’s was chosen correctly, a 

50-50 lottery can be used, using 𝛼’s correspondent revenue as 

reference points and the certainty equivalent. For each segment, if the 

decision makers indicate the certainty equivalent as being the average 

of segment revenue value for each segment, then there is no need to 

change the number of levels or 𝛼’s. 

 If the decision makers indicate the certainty equivalent to be a 

different value from segment average revenue value, then it is 

necessary to change the number of levels and 𝛼’s. The change can be 

made by dividing the analyzed segment into two segments of the same 

size, which would increase the number of levels by one and add one 

more 𝛼 value to the model. 

 The procedure is repeated until all certain equivalents chosen by 

decision makers are the mean of the revenue of the evaluated segment. 

 

As, for each segment, the utility function is a linear function (𝑢(𝑥) ~ 𝑥), so 

within each segment, there is proportional (constant) risk aversion as shown in 

equation (19), the 50-50 lottery and the certainty equivalent comparison strategy 

can be used to support the definition of the number of levels and 𝛼’s as described 

above. 

The certainty equivalent obtained from the assessment in some cases will 

diverge just a bit from the computed value, which is the average of the segment. A 

significance or approximation margin can be established for which the empirical 

value obtained is considered as the computed value, even if they are not exactly the 

same. For example, a 5% margin can be considered, relative to the distance from 
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the extremes of the segment to the midpoint or ±2.5% considering 𝑉𝑎𝑅% scale and, 

if the empirical value of the certainty equivalent falls within this margin, the risk 

neutrality condition is considered to be fulfilled, within the segment. 

The approach described above applies only to the assessment of utility 

function for a single agent. For the definition of the number of levels 𝑁 and  𝛼’s for 

the national system, the previously suggested approach would be not recommended 

and the definition of the number of levels and 𝛼’s does not necessarily need to be 

directly obtained through the interviews with the agents. The determination of the 

parameters of number of levels 𝑁 and 𝛼’s using interviews would require the agents 

to respond interviews in a two-stage process. First stage for the definition of the 

number of levels 𝑁 and 𝛼’s and second stage for the definition of 𝜆’s. The stages 

should occur separately as it would be necessary to consolidate the data and 

determine the parameters of number of levels and 𝛼’s before starting the interviews 

to assess the risk aversion parameters 𝜆’s because the number of levels and 𝛼’s must 

be the same for all agents.  

Implementing this two-step process may incur significant costs and consume 

valuable time, with relatively little benefit in terms of obtaining the utility function. 

This is because the crucial risk aversion parameters, which hold the utmost 

importance, are exclusively defined by the 𝜆’s. The number of levels 𝑁 and the 𝛼’s 

parameters are related to the level of approximation of a smooth utility curve and 

to the risk milestones (e.g., 95%) that are specific to each agent and do not make 

sense for a large number of agents, as occurs on national system. 

Thus, an adequate strategy for a system with many agents is to previously 

establish the number of levels and 𝛼 values and, later, access the  𝜆’s values, through 

the interviews, in a single stage process. For example, it can be used 𝑁 = 5 and the 

following 𝛼’s: 30%, 60%, 80%, 90% and 95% or 40%, 65%, 80%, 90% and 95%. 

 

2.5.2 
Estimation of utility function risk aversion parameters 𝝀’s 

Several works were developed to assess the utility function, among them the 

pioneering and seminal works of Meyer and Pratt (1968), Swalm (1966) and 

Spetzler (1968). Significant research related to the assessment of utility functions 

continues to this day, not only within the financial and economic sectors but also 
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across various other fields. For instance, Feeny et al. (2002)  describe the estimation 

of the Health Utilities Index Mark 3 (HUI3) scoring system. This system comprises 

eight single-attribute utility functions and one multiplicative multi-attribute utility 

function. HUI3 is grounded in the von Neumann-Morgenstern (vN-M) expected 

utility theory, with extensions to accommodate multi-attribute functions. 

Another study in the health sector involving the assessment of utility 

functions was conducted by van Dam et al. (2020) . This study evaluates utility 

functions to provide clinicians with information for decision-making regarding the 

use of opioid analgesics for pain relief. Furthermore, utility functions find 

application in the development of new opioids and the selection of opioids for 

treatment, as opioids with positive utility functions are favored over those with 

negative utility functions. 

Numerous studies also exist within the field of management. Harrison et al. 

(2010), for instance, explores factors that facilitate acquisition of knowledge about 

stakeholder utility functions and analyze how firms that prioritize stakeholders 

management can competitively benefit from this guidance over long term, 

sustainably. 

The strategies for assessing utility functions are quite diverse, and there is no 

one-size-fits-all approach due to significant variations in evaluated conditions and 

data structures from one case to another. One of the most intuitive and 

straightforward methods to assess utility functions involves lotteries and certainty 

equivalents. The decision-maker expresses their preference for the outcome of a 

given lottery, typically with a 50-50 percent probability, or its certainty equivalent, 

allowing to map one utility function empirical point. Repeating the process for other 

lotteries, it is possible to map a set of empirical points that will be later used to fit 

the utility function. 

The methodology usually employed for the empirical assessment of points 

along the utility curve requires the utilization of a specific questioning approach 

and is described detailed in Keeney and Raiffa (1976). This approach involved the 

selection of choices between 50-50 lotteries featuring two potential outcomes, and 

a certain outcome. Subsequently, the value associated with the certain outcome is 

systematically adjusted through successive inquiries until the decision maker reach 

a state of indifference between the certain outcome and the lottery (i.e., the 
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determination of the lottery's certainty equivalent). The utility of the consequences 

of the lottery is set arbitrarily. 

The utility of certainty equivalent is found easily as the utility assigned to the 

certainty equivalent must be equal to expected utility of the lottery. This method 

leads to an empirical point of the utility function. Then, the certainty equivalent can 

be used to evaluate the utilities of other consequences. Through this iterative 

process, multiple data points along the utility function can be estimated. Finally, a 

coherent and continuous curve is fitted to the empirical data to provide a smooth 

representation of the utility function. Following there is an example of a questioning 

quoted from Swalm (Swalm, 1966): 

Suppose your company is being sued for patent infringement. Your 
lawyer's best judgment is that your chances of winning the suit are 50-
50; if you win, you will lose nothing, but if you lose, it will cost the 
company $1,000,000. Your opponent has offered to settle out of court 
for $200,000. Would you fight or settle? 

 

The  Figure 7 shows a didactic example of utility function fit for a risk neutral 

investor using 7 empirical points. Equation (59) shows the utility function fitted 

using the least squares method: 

 

 

 𝑢(𝑥) = 2.36𝑥 + 10 

𝑅ଶ = 0.96 

(59) 
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A variant of this approach involves the utilization of lotteries in which the 

probabilities of success and failure are subject to variation. The decision maker is 

presented with a choice between an investment with a success probability of 𝑝 and 

a failure probability of 1 − 𝑝, accompanied by consequences 𝑥௦ in the event of 

success, and 𝑥௙ in the event of failure. The decision maker is then required to 

determine whether to proceed with the investment or not. The probability 𝑝 is 

successively adjusted until the decision maker reaches a probability of indifference 

𝑝଴ regarding the decision to engage in the investment or abstain from it. The utility 

for 𝑝଴ is given by equation (60) (Keeney & Raiffa, 1976): 

 

 𝑢(0) = 𝑝଴𝑢(𝑥௦) + (1 − 𝑝଴)𝑢(𝑥௙) (60) 

 

 Repeating the procedure for a range of lotteries or investment opportunities, 

it is possible to empirically record points of utility function and then fit a smooth 

curve to represent the decision maker’s utility function. 

Respondents may encounter challenges, particularly when dealing with 

probabilities deviating from the 50% mark. Understanding and quantitatively 

interpreting probabilities, especially those at values like 20% or 30%, can pose 

Figure 7 – Example of utility function fitted to empirical data 
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difficulties for decision-makers. Clarifying what these probabilities truly signify 

may present a hurdle in the decision-making process. Thus, if the questioning 

strategy involves probabilities that differ from 50%, the use of graphic tools, such 

as the pie chart, may be appropriate to help the respondent understand these 

probabilities through graphic visualization. 

An example of how the certainty equivalent strategy can be applied is 

elaborated by Spetzler (1968) in which and individual stated that he is indifferent 

between the following alternatives A and B (Table 3). 

 

  Alternative A Alternative B 

  Probability Outcome Outcome 

1 0.5 $ 30 million  
A sure $ 4 million 

 0.5 0 

2 0.8 $ 30 million 
A sure $ 10 million 

 0.2 0 

2 0.7 $ 30 million 
A sure $ 4 million 

 0.3 $ -2 million 

Table 3 – Certainty equivalent strategy to assess the utility function 

Source: Spetzler (1968) 

 

As the decision maker is indifferent between A and B alternatives, the utility 

of certainty equivalent (alternative B) is equal to the expected value of the utility of 

the lottery (alternative A), as shown in equation (61), equation (62) and equation 

(63): 

 

 𝑈($ 4 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) = 0.5𝑈($ 30 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) + 0.5𝑈($ 0) (61) 

 

 𝑈($ 10 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) = 0.8𝑈($ 30 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) + 0.2𝑈($ 0) (62) 

 

 𝑈($ 4 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) = 0.7𝑈($ 30 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) + 0.2𝑈($ − 2 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) 

 

(63) 

Two values on the scale can be arbitrary chosen, for example 

𝑈($ 30 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) = 100 and 𝑈($ 0) = 0. Then it is possible to calculate the utility 

values for $ 4 𝑚𝑖𝑙𝑙𝑖𝑜𝑛, $ 10 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 and $ − 2 𝑚𝑖𝑙𝑙𝑖𝑜𝑛: 50, 70 and −66 2/3, 
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respectively. These points are empirical points and will be used to build a plot and 

proper fit a utility function that represents the decision maker’s preferences. 

 

Source: (Spetzler, 1968) 

 

The plot (Figure 8) can be used to build a utility model, fit the utility function 

and to check if the points obtained are consistent with expected results from the 

expected utility model. The pattern of points describes the aversion risk profile from 

the decision maker. For example, a straight line would represent a risk neutral 

decision maker. The more concave is the pattern, the more the decision maker is 

risk averse. Sometimes the results from the plot will show inconsistencies with the 

utility model and one of the assumptions of the model is that the plot will predict 

future behavior, so, if it is identified any inconsistent behavior by analyzing the plot, 

it is expected that the inconsistent behavior will persist.  

Another variant of this approach uses a mathematical form of the utility 

function prior to plotting the graph which will necessarily be used to fit the 

parameters based on the empirical data resulting from the interviews. The main 

disadvantage of this approach is that it assumes a previous pattern of behavior by 

the decision maker reflected in the form of the utility function, which may not be 

true. The chosen function needs to have a high level of shape flexibility, in order to 

Figure 8 – Example of utility function assessment 
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accommodate a range of different types of response and behavior patterns that can 

be obtained (Spetzler, 1968). 

One of the biggest challenges when assessing a utility function using 

questions about the certainty equivalent and alternatives with associated 

probabilities is the construction of adequate questions. The questions must be 

created so that the responses would be the same to an actual decision. Another 

challenge is to ensure that the decision maker's responses reflect the preferences of 

the organization and not the individual decision maker, so the decision maker must 

respond according to what he believes he should decide, considering the 

organizational objectives and not his own objectives. 

There are also some alternative approaches as hybrid assessment methods and 

paired-gamble methods that are robust against different forms of bias (Farquhar, 

1984). These methods can be an appropriate alternative when biases are identified. 

Bias emerges when individuals exhibit a tendency to disproportionately favor 

certain outcomes over those linked with probabilities. Additionally, biases are 

apparent in the assessment of ventures with risk. Notably, outcomes with lower 

associated probabilities, e.g., 20%, are often overestimated, whereas higher 

probabilities, like 80%, tend to be underestimated.  (Tversky, 1967). 

Unlike number of levels 𝑁 and the 𝛼 values, which are more directly related 

to the level of approximation or granularity of the utility function, 𝜆’s are directly 

related to the level of risk aversion in each segment and, consequently, to the shape 

of the utility function. It is therefore the most important parameter to be estimated 

between the 3 types (number of levels 𝑁, 𝛼’s and 𝜆’s). 

For the number of levels 𝑁 and 𝛼 values, even without knowing the decision 

maker's preferences, it would be possible, simply by increasing the number of levels 

and choosing 𝛼’s equally spaced, to improve the adherence of the utility function. 

It is possible to start with generic values, such as the 5 proposed levels as mentioned 

on previous topic, and it will be a good starting point for modeling the utility 

function. 

On the other hand, it is not possible to do the same for 𝜆’s as they are related 

to levels of risk aversion, it would not be appropriate to establish arbitrary initial 

values and these values need to be determined directly, asking a set of questions to 

the decision makers. Although there is no prior information about the 𝜆’s, it is 

important that the function obtained is globally risk averse and that the 𝜆’s obtained 
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are all positive. These assumptions are part of the ECP and ECP_G formulation and 

need to be satisfied. 

For the estimation of 𝜆’s for the ECP_G functional  and its underlying utility 

function, it is necessary to consider that there is already a predetermined 

mathematical form of the utility function (equation (46)) and that it does not depend 

on any type of prior evaluation of risk preferences of the decision makers. The 

mathematical form was constructed in a way that allows a large flexibility of shape 

of the utility function. 

There are some significant differences between the present work and those 

that are usually carried out to assess the utility function of decision makers, which 

need to be considered before we suggest the approach to estimate the risk 

preferences. Usually, research tries to develop a prescriptive utility function that has 

the following characteristics (Spetzler, 1968): 

1. Continuous and twice differentiable over the range of 𝑥. 

2. Lead to a risk aversion measure function 𝛾(𝑥) = 𝑈ᇱᇱ(𝑥) 𝑈ᇱ(𝑥)⁄  that 

is positive or equal to zero over the range of 𝑥. 

3. 𝛾(𝑥) should be constant or, at least, monotonically decreasing 

(𝛾ᇱ(𝑥) ≤ 0) over the range of 𝑥. 

 

The ECP_G underlying utility function, as a piecewise function, is not twice 

differentiable over the points where the slope of the function changes (the endpoints 

of each segment). Each segment of the function is risk neutral, and the Arrow-Pratt 

classical risk aversion measure (Arrow, 1965; Pratt, 1978) (𝛾 = 𝑈ᇱᇱ(𝑥) 𝑈ᇱ(𝑥)⁄ ) is 

not appropriate or useful as 𝛾 = 0 for all segments and it does not capture the global 

risk aversion of the function. The measure of function risk aversion pattern for the 

piecewise function is possible only when two or more segments are compared, as 

the function is globally risk averse but not locally risk averse. The risk aversion of 

each segment is calculated comparing it to the previous segment of the utility 

function. The measure obtained should be monotonically decreasing over the range 

of possible segments. An appropriate measure is described by Luz (2016) and needs 

to evaluate the risk aversion considering two segments of the function and the risk 

measure compares one segment to another to evaluate the changes in risk aversion. 

The measure for piecewise function that can capture risk aversion from one segment 

to another is shown in equation (50). In this way, any utility function will be proper 
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fitted to the empirical data will only if, indeed, the decision makers exhibit risk 

aversion behavior and if the pattern of risk aversion decreases from one function 

segment to the next. 

Despite these important differences, with the necessary adaptations and 

constraints imposed, such as the alternative way to measure the aversion (equation 

(50)), that the overall behavior of the piecewise linear utility function is quite 

similar to the behavior of a usual prescriptive utility function and we can use similar 

strategies to assess the utility function. 

 

2.5.2.1 
Experimental approach 

The strategy for mapping empirical points using certain equivalents and 

lotteries or investments with associated probabilities is quite adequate and 

promising, given its simplicity and ease of understanding by decision makers. The 

proposed experimental approach for the assessment of the utility function is: 

1. Map a set of experimental utility points using indifference 

probabilities responses for hypothetical investments. The financial 

level of investments should be as close as possible to the level the 

agent usually decides. The hypothetical investments should vary in 

value so that the plot cover all segments of the utility function. 

2. Analyze the plot to check any inconsistencies. The points should 

present an overall pattern of risk aversion. Reassess with the decision 

maker any points that are very distant from the pattern found 

(outliers). 

3. Fit the linear function for each segment using the mathematical form 

of equation as reference. The utility function should change slope 

exactly on the points determined by 𝛼’s. 

4. After fitting the utility function, it is possible to determine the 𝜆’s 

values using the slopes of each segment. All the 𝜆’s values must be 

positive, and any negative values indicate the need to redo the 

procedures to assess the agent's preferences. 
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As the utility function only presents risk aversion when considering two or 

more segments so the approach to determine the utility function parameters 

involves framing questions in which the outcomes of investments or lotteries are, 

at least, in adjacent pairs of the 𝑁 + 1 segments. The outcomes of the hypothetical 

investments should not be within the same function segment, as the responses, in 

this case, would not allow the calculation of risk aversion parameters. The 

questions, using outcomes of two separate segments will allow to assess the 

empirical utility function values for any function outcome. 

The points in which the slopes of the utility function changes are expressed 

in terms of 𝑉𝑎𝑅, which is related to 𝛼’s, for example 𝑉𝑎𝑅ଽହ% is the VaR related to 

the 𝛼 = 95%. Therefore, it is necessary to find the 𝑉𝑎𝑅 values for the revenue of 

each agent. The challenge lies in the availability of values for all potential revenue 

outcomes from the agent's investments. These values are crucial for enabling a 

direct calculation of 𝑉𝑎𝑅’s and their associated revenue values corresponding to 

each 𝛼 previously determined along with the number of levels 𝑁.  

Developing a method to estimate the output distribution becomes imperative 

due to their limited accessibility, as they hardly would be available completely. As 

the estimates of the utility function parameters will be inputted to the programs of 

the national system operator, a good reference for the distribution of revenue is the 

PLD (Preço de Liquidação das Diferenças) simulation, which is generated through 

the NEWAVE program, developed by CEPEL (Centro de Pesquisas de Energia 

Elétrica) for the national system operator.  

The Nwlistop is a NEWAVE complementary program, and it generates 2,000 

price simulation for each submarket. As the agent whose risk preferences are being 

assessed is an electricity market agent directly influenced by the settlement price of 

differences (PLD) variation, it is reasonable to assume that its distribution of 

revenue will be similar to the distribution of the simulated PLD for the submarket 

in which the agent operates. If the agent operates in more than one submarket it will 

be necessary to assess the parameter for each submarket as the risk aversion can be 

different from one market to another. The NEWAVE PLD simulation should be 

generated for period closest to the investment payback period. 

To convert the PLD simulated values to revenue values, it is necessary to 

calculate a conversion factor, which will be applied to all PLD’s simulated by 

NEWAVE. The conversion factor (𝐶𝐹) can be calculated as follows (equation 64): 
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𝐶𝐹 =

𝑅ത

ቆ
∑ 𝑃𝐿𝐷௜

ଶ଴଴଴
௜ୀଵ

2000
ቇ

 
64 

 

where 𝑅ത is the average revenue of the agent investments or projects.  

 

The average revenue of the agent is a value that needs to be estimated based 

on the revenue of the agent’s investments in the electricity sector. The period 

considered can be, for example, the last 2 or 5 years. 

By applying the conversion factor to all PLD’s it is possible to define the 

revenue values of the agent related to each 𝑉𝑎𝑅ఈ೔
. The conversion is necessary as 

the values of 𝛼 values are originally expressed in percentages rather than in terms 

of revenue. The utilization of the conversion factor enables the evaluation of 

preferences among agents with diverse scales and financial capacities. 

To use the conversion factor and find the VaR value for the agent scale, we 

first define the 𝛼 value that will to be converted. Then we find the value for the 

PLD distribution and finally we multiply the value by the conversion factor 

(equation (65)). 

 

 

𝑉𝑎𝑅ఈ௝ =
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(65) 

 

where 𝑉𝑎𝑅ఈ௝is the 𝑉𝑎𝑅ఈ converted for agent 𝑗, 𝑉𝑎𝑅ఈ௉is the 𝑉𝑎𝑅ఈ obtained from 

PLD distribution and 𝑅ത௝is the average of revenue from agent 𝑗. 

 

Using the certainty equivalent method, described previously, and making the 

correct adjustments to the distribution, using the conversion factor, for the 

assessment of utility function, it is possible to assess the utility function factors 𝜆’s 

for a variety of agents of each submarket. It is important to assess the utility function 

of agents that varies on size and types of projects. After the assessment of the utility 

function and its parameters for a variety of agents it will be possible to obtain a 
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distribution of empirical utility points. The compilation of final 𝜆 values that will 

be used for the national system operator can be obtained through some methods that 

will be discussed later. 

 

2.5.2.2 
Interview approach 

As mentioned earlier, the proposed interview approach employs hypothetical 

high-risk investments linked to two potential outcomes (𝑥௜), each with its 

corresponding probabilities (𝑝(𝑥௜)). The goal for each hypothetical investment is to 

determine the indifference point for the decision maker – whether to pursue the 

investment or not. The certainty equivalent (𝐶𝐸) is used to determine the 

experimental points as the utility of the certainty equivalent must be equal to the 

expected utility of the lottery (equation (66)):  

 

 
𝑈(𝐶𝐸) = ෍ 𝑝(𝑥௜)𝑈(

ଶ

௜ୀଵ

𝑥௜) 
(66) 

 

To map the experimental points using the certainty equivalent approach there 

are two main techniques that are applied: 

1. Employ 50-50 lotteries to determine the certainty equivalent through 

successive inquiries until the decision maker reach a state of 

indifference between the certain outcome and the lottery. 

Subsequently, compute the utility of the certainty equivalent using 

equation 66. 

2. Utilize a fixed certainty equivalent (typically the value of the 

investment or project) and systematically adjust the probabilities of 

success and failure until the investor reaches a state of indifference 

regarding whether to invest in the project or not. 

 

The approach 1 has the advantage of providing probabilities that are easy to 

understand and interpret by the decision maker. This is, therefore, a simpler and 

more intuitive approach for the interviewee. On the other hand, approach 2 is closer 

to the actual decisions made by managers in which, usually, investments have a 
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determined value and the outcomes have varied probabilities of success. An 

advantage of approach 2 is that there is control over the location on the position of 

the empirical certainty equivalent over the x-axis. It is possible to choose, for 

example, equally spaced values on this axis, which may be desirable for later 

function fitting. 

There is no right or wrong approach between 1 and 2, and each application 

require the evaluation of the more suitable approach. For the assessment of ECP_G 

underlying utility function, we chose approach 2 as it is convenient to control the 

number of empirical points within each segment to proper fit the function to each 

segment. While approach 1 permits the certainty equivalent (empirical point) to be 

positioned anywhere amidst the potential outcomes, approach 2 offers the 

advantage of precisely defining both the quantity and placement of empirical points. 

This, in turn, greatly facilitates the fitting of linear functions to each respective 

segment and avoid segments without measured utility. 

Another choice, which is quite important, is the number of questions to pose 

during each interview. A very small number of questions can affect the function's 

fit for the segment. Therefore, a greater number of data points acquired tends to 

yield more robust results. However, a very large number of questions can be tiring 

for the interviewee, who may answer, after a while, automatically without correctly 

interpreting the questions and data. In this way, a large number of questions and, 

consequently, empirical points obtained are desired, but not to large that becomes 

exhaustive for the interviewee. An alternative to increase the number of empirical 

points obtained, without making each interview too tiring, is to increase the number 

of interviewees from the same agent.  

There is also no exact number of people or agents who need to be interviewed 

in each utility function assessment. It depends on factors such as the availability of 

respondents and the number of decision makers within each company. Swalm 

(1966) interviewed about 100 executives while Spetzler (1968) interviewed 36,  and 

Green (1963), 16 executives. 

For the assessment of the ECP_G underlying utility function is suggested, for 

each interview, 10 questions for each adjacent pair of linear functions. For 5 levels 

(6 segments), it would be necessary to determine 60 empirical utility points, but, as 

will be elucidated next section, for the first segment (𝑥 ∈  ]𝑉𝑎𝑅ଵ; 𝑉𝑎𝑅଴], 𝑉𝑎𝑅ఈబ
→

 +∞) we are going to choose two arbitrary utility points. So, for the first segment, 
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we don’t need to determine any empirical point and, for 5 levels we will determine 

50 utility points and not 60. The number of interviews per agent suggested is one, 

as the focus is to determine the parameters for the system and not for a single agent, 

it is better to include more agents then increase the number of empirical points from 

the same agent.  

There is also a concern with standardization, that why the same number of 

utility point is required.  If, within the same agent, the decisions regarding the low-

end and the high-end level of investments are taken by different management levels, 

it is possible to divide the interview in more than one, but it is important to gather 

the same number of utility points per agent after the assessment. It is also important 

to gather the same number of experimental points per agent to allow the proper 

treatment when consolidating the values of the parameters. The number of agents 

to have the utility function assessed should be as large as possible and it is important 

that the agents have different profiles and sizes. 

 

2.5.2.3 
Defining arbitrary values for the utility function 

 To assess the utility function, we need to begin by establishing two initial 

arbitrary utility points. Subsequent utility function points are then derived based on 

these initial values. It's important to note that all segments and values within the 

underlying utility function of the functional ECP_G are contingent upon the 

definition of 𝜆’s values, which are unknown at the outset of the assessment. There 

are no pre-established fixed utility values, by the definition of ECP_G underlying 

utility function, from which we can derive other utility points. On the other side, by 

selecting two arbitrary values we cannot guarantee, in the first moment, that the 

assessment will yield the desired mathematical structure outlined in equation (46), 

which includes constraints such as the requirement of ∑ 𝜆௜ = 1. However, to 

perform the interviews, it is imperative to determine two initial utility values, 

otherwise we cannot determine any empirical point. So, by the end of this process, 

we will have obtained a piecewise linear function but not necessarily with the 

desired mathematical form. Instead, we will have a utility function that is 

strategically equivalent and possesses the same risk preferences. Therefore, it will 
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be necessary to transform the obtained utility function into another one that 

possesses the desired mathematical form, as defined in equation (46). 

Since each linear function exhibits local risk neutrality while the utility 

function demonstrates global risk aversion, we must compare the slopes between 

segments to reflect risk aversion behavior accurately. This conversion is executed 

using an alternative risk aversion coefficient, as defined in equation 50, which 

compares the slope of one segment to the next. The goal of this conversion is to 

ensure that the calculated risk aversion coefficient remains consistent across all 

segments in both functions (the function obtained, and the function converted to the 

desired format). Throughout this conversion process, we must also maintain the 

constraint ∑ 𝜆௜ = 1. 

We suggest establishing the two arbitrary values for the first segment, which 

contains the 𝜆଴ slope. By stablishing two arbitrary values, an arbitrary 𝜆଴ will, 

consequently, be chosen. Through the interviews, the other empirical points will be 

determined, and the function fit will provide the values for the other 𝜆௜’s stablishing 

the slope for the other function segments. 

One possible and recommended approach to determine the two arbitrary 

utility points is to use a 45-degree slope (𝜆଴ = 1) and a make 𝑈൫𝑉𝑎𝑅ఈభ
൯ = 𝑉𝑎𝑅ఈభ

. 

This approach allows us to select two points within the first segment and determine 

the experimental utility points of the other function segments. The Figure 9 shown 

an illustrative example of assessment of utility function using two arbitrary values 

where 𝛼ଵ = 50% and 𝑉𝑎𝑅ఈభ
= 20; 𝛼ଶ = 95% and 𝑉𝑎𝑅ఈమ

= 5. The lambdas are 

𝜆଴ = 1, 𝜆ଵ = 30% and 𝜆ଶ = 15%. The slopes are 𝑠଴ = 1, 𝑠ଵ = 1,6 and 𝑠ଶ = 4,6. 
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The slopes of all the utility function segments are higher than 1 so, clearly, 

the constraint ∑ 𝜆௜ = 1 is not met. So, we need to compute another utility function 

from the assessed function that has the required mathematical form and the same 

risk preferences from the original one. The procedure will be shown next, after we 

present the approach to consolidate the utility parameters after the interviews. 

 

2.5.2.4 
Consolidating the utility function parameters 

After the interview process is completed, it is necessary to calculate the value 

of the parameters. The objective, at this stage, is to calculate the consolidated 𝜆’s. 

As previously discussed, the number of levels and 𝛼’s should be defined before the 

Figure 9 – Example of assessed utility function using two arbitrary utility points 
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interviews. There are two main approaches that can be used to calculate the 

consolidated 𝜆’s: 

1. Calculate the 𝜆’s for each agent, using an optimization program to fit 

the best linear function for each segment, and then determine the 𝜆’s 

for the agent using the slopes of each segment obtained. Finally 

weight the values for the system using a set of criteria. 

2. Convert all the utility function empirical points for the same base, 

using the conversion factor (equation (64)) and then, directly fit the 

linear functions of each segment using an optimization program. and 

then determine the 𝜆’s for the agent using the slopes of each segment 

obtained. 

 

The advantage of the approach 2 over the approach 1 is that the function fit is 

optimized for all data and the optimizer will consider all empirical points at once. 

The approach 1 optimizes the results only for the agent and not necessarily for the 

system. Despite that, approach 1 makes possible to weight the 𝜆’s, using one or 

more criterion, for example, revenue of the agent. If we need to weight the 

parameters using approach 2 it will be necessary to increase or decrease the number 

of empirical points of each agent to reflect the weigh desired for each agent. 

We recommend Approach 2 for the consolidation of 𝜆’s as it allows to achieve 

a better function fit to the data and will lead to a more adherent 𝜆’s to the decision 

makers preferences. To put the empirical data on the same scale, all revenue values 

related to the determined empirical points from the agent is divided by the average 

revenue from that agent as shown in equation (67): 

 

 �̿� ௜௝ =
𝑥 ௜௝

𝑅ത௝

 (67) 

 

where 𝑥 ௜௝ is the standardized x-axis of utility of the empirical point i of agent j, 𝑥௜௝ 

is the x-axis of the empirical determined utility of point i of agent j and 𝑅ത௝is the 

average of revenue from agent 𝑗. 
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To fit the utility function using the approach 2 is necessary to fit each segment 

at a time. The fit is very similar to any other function fit to empirical data and we 

should choose an adequate optimizer method for linear regression. One of the most 

common methods to perform a linear regression is the mean square root but there 

are many other methods to perform the linear regression available for being used 

with python, R, MATLAB etc.  

The only difference from a traditional linear regression of data fitting is that 

there is an additional constraint, normally not present in this type of problem. To 

ensure the continuity of the piecewise linear function as a whole, the utility of the 

points where there is a change in slope of the piecewise linear function, the utility 

value must match for the two linear pieces of the function at these points of slope 

change. 

To fit the piecewise utility function and cope with this constraint, we propose 

the following: 

1. Convert all data and aggregate it in one single set of data. 

2.  Estimate de utility function initially for the first segment, the one with 

the less desired outcomes, ൧𝑉𝑎𝑅ఈಿశభ
; 𝑉𝑎𝑅ఈಿ

൧ ; 𝑉𝑎𝑅ఈಿశభ
→  −∞ . 

This first segment is the most important as it can lead, in some cases 

the company to bankrupt. The first segment will have the utility 

function fitted without any additional constraint mentioned above.   

3. The next adjacent segment will have the lower bound point that can 

be obtained using the utility function from the first segment. This 

point is the same for the two adjacent segments as the function is 

continuous. The optimizer must fit the function for de second segment 

making the function to pass through the utility point calculated for the 

lower bound. 

4. Repeat 3 for the next segments until segment 0. The segment 0 does 

not need to have the function fitted as the slope is determined by the 

two arbitrary utility points. 

5. Use the slope of each segment to calculate the 𝜆 values (equation 

(68)), that will represent the values that will be used ECP_G 

functional, after the adjustments shown in the next topic. 
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 𝑠଴ =  𝜆଴ 

𝑠ଵ =  𝜆଴ +
𝜆ଵ

(1 − 𝛼ଵ)
 

𝑠௡ =  𝜆଴ +
𝜆ଵ

(1 − 𝛼ଵ)
+ ⋯ +

𝜆௡

(1 − 𝛼௡)
 

(68) 

 

where 𝑠௜ is the slope of each of   𝑁 + 1 linear functions fitted to the data. 

 

As all linear functions slopes 𝑠௜ will be determined after the function fit to 

data, the 𝜆 can be easily determined by solving the system of equations as shown in 

equation (68). 

 

Figure 10 – Example of function fit for a piecewise linear utility function with two 
levels and 3 segments 
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The Figure 10 shows an illustrative example of function fit starting by the 

segment with the less desirable outcomes (segment 2, ]0, 5]). Then the fit is 

performed for the next segment (segment 1, ]5,20]). Note that we don’t have 

empirical points within segment 0 as the 𝜆଴ is arbitrary and, in this case, equal to 1. 

Fewer empirical points are purposely presented than those suggested for better 

visualization. 

 

2.5.2.5 
Crafting the ultimate utility function 

As mentioned previously, the utility function assessed, despite being a 

piecewise linear function, lacks the required complete mathematical form shown in 

equation (46) and does not meet the ∑ 𝜆௜ = 1 constraint. So, we must construct 

another utility function that has the same risk preferences from the assessed one but 

meet the constraints and mathematical form required. 

The first procedure is to calculate the risk parameters for the utility function, 

using equation (50). From the example shown in Figure 9, where 𝜆଴ = 1, 𝜆ଵ = 30% 

and 𝜆ଶ = 15%, we have the following slopes and risk aversion measures (Table 4): 

 

Function 
Segment Slope (𝑠௡) Risk Aversion (𝜸𝒏) 

0 𝑠଴ = 𝜆଴ = 1 _ 
1 𝑠ଵ = 1.6 

𝛾ଵ = −
1 − 1.6

1.6
=  0.375 

2 𝑠ଶ = 4.6 
𝛾ଶ = −

1.6 − 4.6

4.6
=  0.652 

 

Table 4 – Example of slope and risk aversion measures for assessed utility function 

  

Then, the parameters of the utility function that we will build from the 

assessed utility function, can be determined solving the system of linear equations 

(equation (69)), as follows, where the risk parameters are fixed values and the new 

slopes are calculated using the equation (50) and the 𝑠௜’s are written in terms of 𝜆௜’s 

and 𝛼௜’s . The same procedure can be used for any number of utility function levels. 

To make possible to solve the system of equations we add the condition ∑ 𝜆௜ = 1 



69 
 

and the number of variables are equal to the number of equations to be solved, in 

our case, 3 equations and 3 variables. 

 

 

 

 

−
𝑠0 − 𝑠1

𝑠1
= 0.375 ∴ 𝑠0 = 0,625 𝑠1 

−
𝑠1 − 𝑠2

𝑠2
= 0.652 ∴ 𝑠1 = 0,348 𝑠2  

𝜆଴ + 𝜆ଵ + 𝜆ଶ = 1 

 

(69) 

where 𝑠଴ =  𝜆଴ and 𝑠ଵ =  𝜆଴ +
ఒభ

(ଵିఈభ)
= 𝜆଴ +

ఒభ

଴.ହ
  and 𝑠ଶ = 𝑎ଵ  +

ఒమ

(ଵିఈమ)
= 𝜆଴ +

ఒభ

଴.଴ହ
. 

 

Solving the systems of equations, we find the final parameters of the new 

utility function, which have the proper mathematical form and the same risk 

preferences as the assessed utility function. The parameters are: 

 

 𝜆଴ = 0.690 

 𝜆ଵ = 0.207 

 𝜆ଶ = 0.103 

 

Note that 𝜆଴ + 𝜆ଵ + 𝜆ଶ = 1 and that the risk measure is the same: 𝛾ଵ =

 0.375 and 𝛾ଶ =  0.652. The slopes of each segment are: 

 

 𝑠଴ = 0.690 

 𝑠ଵ = 0.103 

 𝑠ଶ = 3.172 

 

The graphical representation of the new utility function is shown in Figure 

11: 
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The mathematical description of utility function from the example is shown 

in equation (70): 

 

 
𝑈(𝑥) ቐ

0.690𝑥 +  4.655 + 0.414(𝑥 − 20) + 2.069(𝑥 − 5) (𝑎)

0.690𝑥 +  4.655 + 0.414(𝑥 − 20)  (𝑏)
0.690𝑥 +  4.655 (𝑐)

 

 

(𝑎): 𝑥 ∈  ]−∞; 5]  

(𝑏): 𝑥 ∈  ]5; 20] 

(𝑐): 𝑥 ∈  [20; +∞[ 

(70) 

 

 

 

Figure 11 – Example of adjusted utility function that meets the mathematical form 
required and constraints, from assessed utility function 
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2.6 
Conclusion 

 

The primary contribution of this research was to present a methodology aimed 

at determining the parameters from the ECP_G functional underlying utility 

function. This novel approach empowers market agents to discern, with heightened 

clarity, uniformity, and precision, the risk preferences of the system participants. 

These preferences play a pivotal role in supporting decisions across various 

scenarios, notably in dual stochastic optimization problems, and find applications 

in the management of the national interconnected system. The proposed 

methodology was rooted in interviews with risk managers and involves 

hypothetical lotteries, wherein these managers express their preferences regarding 

two types of investment with varying probabilities of occurrence. This approach not 

only enhances decision-making processes but also facilitates a nuanced 

understanding of risk preferences in diverse applications within the national 

interconnected system. 

Furthermore, the methodology allows for the evaluation of the 

appropriateness of the selected number of levels, employing 50-50 lotteries. This 

additional layer of assessment ensures a comprehensive understanding of the 

chosen risk levels and their alignment with the decision-making context. The 

substantial acceptance of models introduced by Street (2010) and Luz (2016) within 

the Brazilian electricity market, particularly by the national system operator, 

underscores the considerable potential for enhancing the outcomes of ongoing 

optimization models applied in the operational framework of the Brazilian system. 

This potential improvement is a direct consequence of adopting a more fitting, 

comprehensive, and uniform procedure for determining risk aversion parameters, 

thus contributing to the refinement of the decision-making landscape in the 

Brazilian electricity sector. 

The main challenge for applying the proposal's approach to the national 

system is the adherence of a large and varied number of generating agents, both in 

size and location, which is fundamental for the adequate capture of risk parameters. 

However, as generating agents directly benefit from an optimized risk management 

system, it is possible that adherence to a utility function assessment will be high. 
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Resources such as the use of video conferencing and online questionnaires can be 

used to make the interview process more practical, faster and economically 

efficient, without losing information relevant to the process. The use of these tools 

is recommended due to the large number of generating agents and geographic 

dispersion. 

As suggestions for future work, we suggest implementing the proposed 

methodology, initially, for a small group of agents and, subsequently, implementing 

the proposed methodology for the national interconnection system. The application 

of the methodology to the national interconnected system represents a great 

opportunity in terms of system risk management, as it guarantees better adherence 

of the system programming to the risk profiles of the generating agents, which 

ultimately represents greater security for the operation of the system in the short 

and long term, preserving the financial health of the system participants. 
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3 
A Game Theoretical Approach for Seasonalization of 
Hydropower Plants Physical Guarantee 

3.1  
Introduction 

In 2022, Brazil harnessed an impressive 440.0 terawatt-hours (TWh) of 

hydraulic energy, constituting a substantial 61.9% share within the total national 

electricity matrix, which stood at 690.1 TWh (EPE, 2023). Hydropower, being a 

renewable energy source, holds a crucial position in the country's energy landscape. 

Nonetheless, this dominance also brings forth notable complexities in the field of 

system management, mainly due to the dynamic nature of river flows and reservoir 

levels. 

Within this intricate context, the effective management of physical guarantees 

and their seasonalization emerges as a critical facet in the orchestration of the 

Brazilian energy system. The concept of physical guarantee represents a 

cornerstone in the management of hydroelectric power generation within the 

Brazilian Interconnected System (SIN - Sistema Interligado Nacional). It embodies 

the maximum energy commitment a power plant can make in its contracts over a 

one-year period. 

Although the total physical guarantee cannot change for the year, there is a 

flexibility for the individual plants to allocate and distribute their annual physical 

guarantees on a monthly basis, with the total allocation remaining constant. This 

practice allows power plants to better align with their energy supply contracts and 

risk profiles, a process referred to as the seasonalization of the physical guarantee. 

This work presents a novel approach employing game theory principles and 

time series forecasting models to optimize the allocation decisions concerning the 

seasonalization of the physical guarantee. Our approach incorporates insights from 

regulatory agencies, market forecasts, and industry expertise.  

It's important to note that the seasonalization of the physical guarantee is an 

annual process with significant financial implications for the market participants, 
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especially for the hydroelectric power plants. This process directly influences the 

exposure of each stakeholder to the weekly spot price, PLD, that is contingent on 

factors like anticipated rainfall patterns and reservoir levels. For instance, the most 

risk-averse strategy involves strictly aligning the yearly physical guarantee with the 

monthly requirements of energy supply contracts, effectively mitigating individual 

exposure to the PLD. Conversely, agents with a higher risk appetite may opt for a 

more dynamic approach, allocating more physical guarantee to months where spot 

prices are expected to peak and accepting increased exposure to price fluctuations. 

The proposed approach empowers decision-makers to calculate the monthly 

physical guarantee for their power plants, which consider the other agent’s 

decisions. Notably, we show that regardless of other agent’s risk preferences, the 

optimal decision consistently converges to the same strategy, known as the Nash 

Equilibrium, optimizing overall results. 

 

3.2  
Brazilian context 

3.2.1  
Price formation and difference settlement price 

The operational management of energy generation and transmission in Brazil, 

apart from a portion of the northern region, is carried out through the SIN and 

comprises four subsystems: South, Southeast/Center-West, Northeast, and Northern 

regions. The energy dispatch decisions within the SIN are made according to the 

merit order, but also considers the present and future energy supply security. 

Accordingly, sources with lower marginal cost have priority in dispatching. 

Thus, hydro power plants, which have a marginal cost close to zero, are usually the 

first to be dispatched. However, when reservoir levels are low or there is a 

forecasted drop in these levels, the operator may choose to preserve this energy 

source and use other one with higher marginal cost to avoid future energy shortage. 

When renewable sources that rely on climatic conditions are used, such as wind and 

photovoltaic energy, the generated energy cannot be stored. Therefore, the energy 

produced by these sources is automatically fed into the system as it becomes 

available and takes priority over other energy sources. 
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The price formation follows the dispatch order, where the current price is the 

price of the last batch supplied to the market and represents the lowest possible 

price for a certain energy load level, generating a balance between supply and 

demand. The last marginal price that meets the demand at a given time is the spot 

price, PLD, and it is used for short-term operations. The PLD has maximum and 

minimum limits, defined for each year in ANEEL Resolution 858/19 (ANEEL, 

2019).  

The PLD holds a central role in the modeling of this work, as it significantly 

impacts the decision-making of power-generating agents when assessing their 

exposure to PLD during the process of seasonalization of their physical guarantees. 

Additionally, we will delve into the Energy Reallocation Mechanism (MRE – 

Mecanismo de Realocação de Energia) shortly, which likewise subjects power 

generators to fluctuations in PLD. 

 

3.1.2  
Energy reallocation mechanism, physical guarantee and Generation 
Scaling Factor 

The predominance of the hydraulic source in the Brazilian electricity matrix 

brings challenges for the management of the SIN. Due to the large extension of the 

national territory, some regions will have more favorable hydrological conditions 

for hydraulic energy production than others. Thus, in the interconnected system, the 

dispatch prioritizes power plants that are under the more favorable hydrological 

conditions and a centralized operation allows for a better treatment of hydrological 

risk, a lower marginal cost, and a greater system safety. It also allows better 

management of resources when there are plants in sequence in the same river basin. 

In these cases, there is an optimal dispatching order that globally optimizes the use 

of resources. The optimized outcome can only be obtained when dispatch 

management is centralized (CCEE, 2018). 

Under this arrangement, the generating agents have no control over the level 

of power generation of their own power plants since the dispatch decision is 

centrally made by the National Electricity System Operator (ONS – Operador 

Nacional do Sistema Elétrico). Thus, depending on the ONS dispatch decision, the 

financial result of the plant's operation may suffer large oscillations. To minimize 

the financial risk associated with the centralized management of the system, the 
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MRE was created so that the hydrological risk could be shared among all the 

generating agents. 

One of the main components of the MRE is the system physical guarantee, 

which is the sum of the physical guarantees of each hydroelectric power plant 

within the SIN. It corresponds to the maximum energy that the system can safely 

supply, considering the supply guarantee criteria in force (MME, 2016). For each 

new plant included in the SIN, it is necessary to calculate its respective physical 

guarantee, which will be part of the concession contract and is the maximum 

amount of energy that the power plant can commit to deliver in contracts. The 

determination of the physical guarantee, as well as its periodical revisions, is carried 

out by the Energy Research Company (EPE – Empresa de Pesquisa Energética) 

and follows specific and regulated methodologies (EPE, 2020b). 

Within the MRE, participating plants receive revenue that is directly 

proportional to the total generation of the entire system. The allocation of this 

revenue is determined by assessing each plant's physical guarantee as a percentage 

of the SIN's overall physical guarantee. MRE functions as an insurance for the 

participating power plants. Through this mechanism, the plants that generate less 

energy than their physical guarantee in a specific period receive compensation from 

those that surpass their guaranteed generation levels. Any gains or losses associated 

with surplus or deficit of generation, either above or below the system's physical 

guarantee, are also distributed proportionally based on each plant's individual 

physical guarantee. Any discrepancies are reconciled at the spot price prevailing in 

the market. 

The adjustment factor of the generation, above or below the physical 

guarantee, is known as Generation Scaling Factor (GSF) and is obtained from the 

division of the aggregated hydroelectric generation by the physical guarantee. The 

system is organized so that the risk of the hydroelectric generation staying bellow 

the physical guarantee, in the period of 1 year, is considerably low. Nonetheless, it 

is conceivable that hydroelectric generation for the year could fall below the 

physical guarantee, particularly during extended periods of drought. In such 

circumstances, the average GSF may drop below 1, which will have an adverse 

effect on the revenue of the power plants. When the average GSF falls below 1, it 

indicates that the sum of energy produced by all the hydroelectric plants in the SIN 

is below the system physical guarantee and is insufficient to cover the contracts, so, 
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that other sources were needed to supply the energy contracted. The shortfall 

between the energy generated and the physical guarantee is adjusted in the short-

term market, for the price of PLD, and the cost is passed on to MRE participants, 

proportionally to their physical guarantees. 

 

3.1.2  
Seasonalization of the Physical Guarantee 

The physical guarantee is determined for the period of one year. However, the 

adjustments of the MRE occur on a monthly basis and the contracts are also 

invoiced monthly. Generating agents are granted the flexibility to perform monthly 

seasonalization of their physical guarantee. Seasonalization occurs once annually, 

with the results delivered in December and applicable for the entire following year. 

Once implemented, it remains static throughout the year without any allowance for 

mid-year adjustments. 

There are specific limitations imposed on the seasonalization process. The 

sum of the 12-month physical guarantee must not surpass the plant's overall 

physical guarantee. Furthermore, for any given month, the seasonalized physical 

guarantee cannot exceed the Effective Power, unless there's no established Effective 

Power defined in the regulatory act. Negative values physical guarantee are also not 

permitted. 

Seasonalization allows each agent to make the decision they consider most 

appropriate to their risk and contract profiles. By seasonalizing, agents can vary the 

exposure to the risk of GSF and PLD variations. A typically conservative agent will 

seek to match, each month, the physical guarantee to the plant's contracts. In doing 

so, the agent tries only to be exposed to the GSF risk as the physical guarantee 

allocated is aligned with contracts profile and the physical guarantee will be enough 

to cover the contracts when GSF is higher or equal to 1.  

There are two main risks to be considered when deciding on seasonalization. 

The first risk is the individual risk, represented by exposure to the PLD resulting 

from a mismatch between the seasonalized physical guarantee and the plant's 

contracts for a given month. The differences, positive or negative, are settled at the 

current PLD. Agents less averse to risk will seek to allocate greater physical 

guarantee to the months with the highest PLD forecasts, expecting generating 
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surpluses that can be settled at the prevailing PLD. But the players must also 

consider the systemic impact of the seasonalization decision, that is the risk 

associated with the GSF (second type of risk). 

The GSF risk also exposes the power plant to the PLD, but this risk is 

distributed across all plants within the system. It is important to emphasize that the 

GSF is not a fixed value resulted from the physical guarantee seasonalization as it 

is determined by the total energy generated, that is uncertain. Decisions related to 

seasonalization directly impact the accounting of GSF, which has financial 

repercussions for all participating members. For instance, if in a given month, 

hydroelectric energy generation falls below the sum of all seasonalized physical 

guarantees, GSF will dip below 1. In such cases, the difference between the 

seasonalized physical guarantee and the actual energy generated is reconciled at the 

price of PLD and allocated in the pool, based on each plant's seasonalized physical 

guarantee. Therefore, seasonalization decisions encompass both an individual 

component (physical guarantee versus power plant contracts) and a systemic 

component (combined system physical guarantee versus actual system energy 

generation). 

When considering the seasonalization decisions, the agents are faced with the 

challenge of anticipating the seasonalization decisions of the other power plants to 

make the most advantageous selection of physical guarantee per month. This 

scenario can be aptly represented as a strategic game, wherein agents are tasked 

with devising an optimal seasonalization strategy. Furthermore, the resulting 

outcomes hinge on the seasonalization strategies adopted by all generation agents. 

 

3.2  
Game-theoretic approach for the seasonalization of the physical 
guarantee  

Game Theory delves into the intricate realm of decision-making among 

interacting agents, whether their intentions lean towards cooperation or conflict. 

Within this framework, agents engage in rational choices, carefully evaluating the 

outcomes of their decisions alongside those made by their counterparts. Perfect 

competition materializes when decisions are made within an environment where 

firms act as price takers, manufacturing homogeneous commodities. Within this 

context, prices are determined by the balance of market demand and industry 
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production, with individual firms holding no sway over the equilibrium price. 

Entrants into this arena face minimal barriers, and collusion remains absent from 

the landscape. However, in the realm of imperfect competition, a multitude of 

scenarios may unfurl, including the emergence of collusion and collaborative 

ventures among the agents. Some of these scenarios are analyzed for commodity 

oil by Guimarães Dias and Teixeira (2010). 

Game theory has found a multitude of applications within the electricity 

sector, serving as a crucial tool for tasks such as determining energy prices within 

specific markets and establishing the values in various auction scenarios. An 

innovative approach in this domain has been presented by Abapour et al. (2020), 

who leveraged game theory to devise a strategy for Demand Response (DR) 

aggregators. This strategy aims to maximize profit by harnessing the flexibility of 

customers' appliances to curtail energy costs, while also employing game theory to 

model competition between aggregators. 

Furthermore, game theory has extended its influence into the realms of 

blockchain technology and energy grids, where consumers can dynamically engage 

in energy consumption, production, sharing, and even storage. This transformative 

category, often referred to as prosumers, was scrutinized by Jiang et al. (2020). 

Their work introduced a game theory-based pricing model for peer-to-peer (P2P) 

electricity trading, considering interactions between sellers and buyers, as well as 

among different sellers. 

The prosumer landscape and community-based market mechanisms have also 

been subjects of analysis by Mitridati et al. (2021). Employing game-theoretic tools, 

they developed a consumer-centric market mechanism that optimizes community 

energy management, offering valuable insights for efficient energy utilization 

within such communities. 

Leonel et al. (2019) introduced an innovative approach employing game 

theory to address the annual seasonalization process in Brazil. Within their study, 

they harnessed a game theory model to scrutinize three distinct seasonalization 

strategies: allocation in accordance with contracts, heightened allocation during the 

wet season, and increased allocation in the dry season. Their analysis encompassed 

two distinct risk profiles, identifying the strategies that constitute the Nash 

equilibrium. 
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However, it's crucial to note that their research operated under the assumption 

that these strategies remained independent of price forecasts and MRE 

apportionment results, variables inherently tied to financial outcomes. In contrast, 

our study takes a different trajectory by delving into the repercussions of 

seasonalization on MRE apportionment. This, in turn, directly impacts the 

Generation Scaling Factor (GSF), which undergoes alterations based on agents' 

seasonalization decisions. Consequently, GSF forms an integral component of our 

model, providing a more comprehensive understanding of the complex interplay 

between seasonalization and its implications on the energy landscape. 

 

3.2.1  
Seasonalization game overview 

The process of monthly seasonalization, conducted once a year, can be 

formulated as a strategic game. Every participant's decision during the 

seasonalization process have a direct impact on other participants results, through 

the GSF. For instance, if one agent maximizes their power plant output for a 

particular month based on a bullish forecast for the PLD, and all other agents do the 

same movement, a mismatch between generated energy and the allocated physical 

guarantee may occur. This imbalance could lead to the GSF dropping below 1, as 

the physical guarantee probably will surpasses the energy generated for that month. 

When the GSF falls below 1, it results in financial penalties for all participants. 

Therefore, successful seasonalization strategies must consider the price 

forecast and the decisions of other agents, which can significantly influence the 

GSF and impacts the power plant revenue. This complex situation can be aptly 

modeled as a strategic game. For the analysis of the dynamics involving the physical 

guarantee seasonalization, we will consider the perfect competition environment, 

where the participants are free to enter and leave the market and there is no 

possibility of collaboration or collusion between the agents (non-cooperative 

game). This assumption is reasonable given that the market for hydro power 

generation is well established and has many participants. 

New participants can freely enter the market through the Regulated 

Contracting Environment (ACR – Ambiente de Contratação Regulada) or the Free 

Contracting Environment (ACL – Ambiente de Contratação Livre). For non-
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cooperative games, the most important concept developed is Nash Equilibrium, 

which represents the set of strategies in which, each player cannot individually get 

their individual result (payoff) better by changing the strategy, unilaterally. This 

equilibrium can be deterministic or probabilistic. 

When it comes to the nature of information within the seasonalization game, 

we classify it as a game of imperfect information. This categorization stems from 

the fact that each agent's seasonalization decisions are revealed simultaneously, 

with no opportunity for subsequent revisions. Information is deemed perfect when 

all participants are fully aware of the actions taken by their counterparts. In the 

context of seasonalization, however, agents only become privy to the decisions 

made by other participants after they themselves have committed to their choices, 

given that these decisions occur concurrently. 

While it's true that there are several pieces of information held by individual 

agents that remain inaccessible to others, the critical information required for 

informed decision-making during the seasonalization process is openly available. 

This includes the set of potential strategies, making this game fall under the 

category of complete information games. 

 

3.2.2  
Designing the framework for seasonalization game strategies 

Before delving into the intricacies of the seasonalization game, it's essential 

to establish two fundamental concepts: the GSF and the payoff for each agent. The 

GSF serves as a crucial index, gauging the extent of coverage the system offers for 

the contracted energy. It can be precisely defined using the equation (71). 

 

 
𝐺𝑆𝐹௝ =

∑ 𝜏௜௝
௡
௜ୀଵ

∑ 𝑔௜௝
௡
௜ୀଵ

 
(71) 

 

where: 

∑ 𝑔௜௝ = 𝐺௜
ଵଶ
௝ୀଵ , 𝐺௜ is the annal physical guarantee of power plant 𝑖, 𝐺𝑆𝐹௝ is the GSF 

for the month 𝑗, 𝜏௜௝is the total generation of power plant 𝑖 for the month j, 𝑔௜௝is the 

physical guarantee allocated by power plant 𝑖 for the month 𝑗 (this value is obtained 
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from the seasonalization of the physical guarantee) and 𝑛 is the number of power 

plants in the energy relocation mechanism. 

 

The annual payoff for each agent (𝜋), as a result from the seasonalization 

decision, is determined by summing the power plant's results over the course of the 

twelve months in a year (equation (72)). 

 

 
𝜋௜ =  ෍ 𝑃௝ ∙ ൣ൫𝑔௜௝ × 𝐺𝑆𝐹௝൯ − 𝐶௜௝൧

ଵଶ

௝ୀଵ
 

(72) 

 

where 𝑃௝is the spot price (PLD) for the month 𝑗, 𝐶௜௝is the contracted amount from 

power plant 𝑖 for the month 𝑗. 

 

To illustrate the seasonalization process, we will employ a simplified example 

featuring two time periods (1 and 2) and involving two participants, denoted as 'a' 

and 'b'. The power plants payoffs for each month are presented in Table 5: 

 

 Period 1 payoff Period 2 payoff Total payoff (𝝅) 

a 𝑃ଵ(𝑔௔ଵ × 𝐺𝑆𝐹ଵ) 
−𝑃ଵ × 𝐶௔ଵ 

𝑃ଶ(𝑔௔ଶ × 𝐺𝑆𝐹ଶ) 
−𝑃ଶ × 𝐶௔ଶ 

𝑃ଵ[(𝑔௔ଵ × 𝐺𝑆𝐹ଵ) − 𝐶௔ଵ] + 
𝑃ଶ[(𝑔௔ଶ × 𝐺𝑆𝐹ଶ) − 𝐶௔ଶ] 

 
b 𝑃ଵ(𝑔௕ଵ × 𝐺𝑆𝐹ଵ) 

−𝑃ଵ × 𝐶௕ଵ 
𝑃ଶ(𝑔௕ଶ × 𝐺𝑆𝐹ଶ) 

−𝑃ଶ×𝐶௕ଶ 
𝑃ଵ[(𝑔௕ଵ × 𝐺𝑆𝐹ଵ) − 𝐶௕ଵ] + 

𝑃ଶ[(𝑔௕ଶ × 𝐺𝑆𝐹ଶ) − 𝐶௕ଶ] 
 

Table 5 – Example of seasonalization outcomes with 2 powerplants for 2 periods 

 

There are only 2 periods to be considered, so if the decision maker chooses 

the amount of physical guarantee to be allocated to month 1 then, automatically, the 

amount of physical guarantee allocated to month 2 is determined, as shown in 

equation (73) and equation (74). 

 𝐺௔ = 𝑔௔ଵ +  𝑔௔ଶ ∴ 

𝑔௔ଶ = 𝐺௔ − 𝑔௔ଵ   

(73) 

 

 𝐺௕ = 𝑔௕ଵ + 𝑔௕ଶ ∴ 

𝑔௕ଶ = 𝐺௕ − 𝑔௕ଵ   

(74) 
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The total payoffs can be expressed as shown in equation (75) and equation 

(76): 

 

 𝜋௔(𝑔௔ଵ) =  𝑃ଵ[(𝑔௔ଵ × 𝐺𝑆𝐹ଵ) − 𝐶௔ଵ] 

+𝑃ଶ[( 𝐺௔ − 𝑔௔ଵ) × 𝐺𝑆𝐹ଶ − 𝐶௔ଶ]  ∴ 

𝜋௔(𝑔௔ଵ) =  𝑃ଵ ൤൬𝑔௔ଵ ×
𝜏௔ଵା𝜏௕ଵ

𝑔௔ଵ + 𝑔௕ଵ
൰ − 𝐶௔ଵ൨ 

+𝑃ଶ ൤( 𝐺௔ − 𝑔௔ଵ) ×
𝜏௔ଶା𝜏௕ଶ

( 𝐺௔ − 𝑔௔ଵ) + ( 𝐺௕ − 𝑔௕ଵ)
− 𝐶௔ଶ൨ 

 

(75) 

 

 𝜋௕(𝑔௕ଵ) =  𝑃ଵ[(𝑔௕ଵ × 𝐺𝑆𝐹ଵ) − 𝐶௕ଵ] 

+𝑃ଶ[( 𝐺௕ − 𝑔௕ଵ) × 𝐺𝑆𝐹ଶ − 𝐶௕ଶ] ∴ 

𝜋௕(𝑔௕ଵ) =  𝑃ଵ ൤൬𝑔௕ଵ ×
𝜏௔ଵା𝜏௕ଵ

𝑔௔ଵ + 𝑔௕ଵ
൰ − 𝐶௕ଵ൨ 

+𝑃ଶ ൤( 𝐺௕ − 𝑔௕ଵ) ×
𝜏௔ଶା𝜏௕ଶ

( 𝐺௔ − 𝑔௔ଵ) + ( 𝐺௕ − 𝑔௕ଵ)
− 𝐶௕ଶ൨ 

(76) 

 

The total generation of each month 1 is 𝜏௔ଵା𝜏௕ଵ. This value can be replaced 

by 𝑘ଵ, that is the generation forecast for month 1. The same can be done for month 

2 and we can substitute 𝜏௔ଶା𝜏௕ଶ by 𝑘ଶ as shown in equation (77) and equation (78): 

 

 
𝜋௔(𝑔௔ଵ) =  𝑃ଵ ൤൬𝑔௔ଵ ×

𝑘ଵ

𝑔௔ଵ + 𝑔௕ଵ
൰ − 𝐶௔ଵ൨ 

+𝑃ଶ ൤( 𝐺௔ − 𝑔௔ଵ) ×
𝑘ଶ

( 𝐺௔ − 𝑔௔ଵ) + ( 𝐺௕ − 𝑔௕ଵ)
− 𝐶௔ଶ൨ ∴ 

 

𝜋௔(𝑔௔ଵ) =  
𝑔௔ଵ

𝑔௔ଵ + 𝑔௕ଵ
× 𝑃ଵ𝑘ଵ 

+
𝐺௔ − 𝑔௔ଵ

( 𝐺௔ − 𝑔௔ଵ) + ( 𝐺௕ − 𝑔௕ଵ)
× 𝑃ଶ𝑘ଶ 

−(𝑃ଵ × 𝐶௔ଵ + 𝑃ଶ × 𝐶௔ଶ) 

(77) 

 

 
𝜋௕(𝑔௕ଵ) =  𝑃ଵ ൤൬𝑔௕ଵ ×

𝑘ଵ

𝑔௔ଵ + 𝑔௕ଵ
൰ − 𝐶௕ଵ൨ 

(78) 
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+𝑃ଶ ൤( 𝐺௕ − 𝑔௕ଵ) ×
𝑘ଶ

( 𝐺௔ − 𝑔௔ଵ) + ( 𝐺௕ − 𝑔௕ଵ)
− 𝐶௕ଶ൨ ∴ 

 

𝜋௕(𝑔௕ଵ) =  
𝑔௕ଵ

𝑔௔ଵ + 𝑔௕ଵ
× 𝑃ଵ𝑘ଵ 

+
𝐺௕ − 𝑔௕ଵ

( 𝐺௔ − 𝑔௔ଵ) + ( 𝐺௕ − 𝑔௕ଵ)
× 𝑃ଶ𝑘ଶ 

−(𝑃ଵ × 𝐶௕ଵ + 𝑃ଶ × 𝐶௕ଶ) 

 

The spot prices (PLD) 𝑃௝ and the generation of each power plant 𝑖 for the 

month 𝑗 𝜏௜௝ are random variables. For simplicity, we considered the PLD and the 

generation (∑ 𝜏௜௝
௡
௜ୀଵ ) forecasts as fixed values, not as variables, and that the 

forecasted values (𝑘ଵ and 𝑘ଶ) will be the same for all agents. We understand that, 

even if the decision makers use different forecast models, these forecasts should 

lead to very similar results. So, the forecasted spot prices and system generation 

should be very close, even if the players use different forecast methods. We also 

assume that the forecasted values should be close to the actual values and that, a 

simpler and efficient approach, would be to consider the forecasted values as the 

actual values. Future works may evaluate if there is any relevant improvement if 

we consider the prices and generation as random variables, which will lead to a 

random payoff. 

The Nash Equilibrium, when it exists, represents the set of strategies in which, 

each player cannot individually get their individual result (payoff) better by 

changing the strategy, unilaterally. The analytical solution the problem must be one 

of the solutions in which the first derivative of the payoff function equals zero as 

shown in equation (79). The same applies both to player 'a' and player 'b'. 

   

 𝑑𝜋𝑎

𝑑𝑔௔ଵ
= 0 

𝑑𝜋𝑏

𝑑𝑔௕ଵ
= 0 

(79) 

 

Our approach was to find the function points where the derivative of the 

function is zero and that are the maximum of the payoff function, what means that 

the second derivative of the function must be negative. Thus, we calculated the 
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point where the derivative is equal to zero for the payoff function of one player and 

then we substituted the results obtained on the other player payoff function. The 

Nash Equilibrium is found if we can make sure that the optimal solution cannot be 

improved, for both players, by individually changing their position. 

There are some constraints that need to be considered: the prices (𝑃௜), the 

power plant generation (𝑘௜), the physical guarantee (𝑔௜௝), the contracted amount 

(𝑐௜௝) and the physical guarantee (𝐺௜) must be positive values. We also must consider 

that the sum of physical guarantee allocate to each month by each power plant is 

equal to physical guarantee (equation (80)).  

 

 
𝐺௜ = ෍ 𝑔௜௝

ଵଶ

௝ୀଵ

 
(80) 

 

For the two players and two periods problem, the first derivative of the payoff 

function, for player 'a' and player 'b' are expressed by the equation (81) and equation 

(82), respectively: 

 

 𝑑𝜋𝑎

𝑑𝑔௔ଵ
= −

𝑔௔ଵ𝑃ଵ𝑘ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଶ
+

𝑃ଵ𝑘ଵ

(𝑔௔ଵ + 𝑔௕ଵ)
+  

𝑃ଶ𝑘ଶ(𝐺௔ − 𝑔௔ଵ)

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଶ

−  
𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)
 

 

(81) 

 

 𝑑𝜋𝑏

𝑑𝑔௕ଵ
= −

𝑔௕ଵ𝑃ଵ𝑘ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଶ
+

𝑃ଵ𝑘ଵ

(𝑔௔ଵ + 𝑔௕ଵ)
+  

𝑃ଶ𝑘ଶ(𝐺௕ − 𝑔௕ଵ)

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଶ

−  
𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)
 

(82) 
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Equaling the payoff derivative function to zero ( 
ௗ𝜋𝑏

ௗ௚್భ
= 0) we can find the 

expression for the 𝑔௕ଵ. There are two solutions, 𝑔௕ଵ ∗ and 𝑔௕ଵ ∗∗, that make 
ௗ𝜋𝑏

ௗ௚್భ
=

0, as shown in equation (83) and equation (84), respectively: 

 

𝑔௕ଵ ∗= 

൮

𝑔௔ଵ𝑃ଵ𝑘ଵ𝐺௔ + 𝑔௔ଵ𝑃ଶ𝑘ଶ𝐺௔ +  𝐺௔ඥ(𝑔௔ଵ𝐺௔𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ − 𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ𝑔௔ଵ
ଶ)

+𝑔௔ଵ𝑃ଵ𝑘ଵ𝐺௕ + 𝐺௕ඥ(𝑔௔ଵ𝐺௔𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ − 𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ𝑔௔ଵ
ଶ)

−𝑃ଵ𝑘ଵ𝑔௔ଵ
ଶ − 𝑃ଵ𝑘ଵ𝑔௔ଵ

ଶ

൲

(−𝑃ଶ𝑘ଶ𝐺௔ + 𝑔௔ଵ𝑃ଵ𝑘ଵ + 𝑔௔ଵ𝑃ଶ𝑘ଶ)

(83) 

 

 

𝑔௕ଵ ∗∗= 

൮

𝑔௔ଵ𝑃ଵ𝑘ଵ𝐺௔ + 𝑔௔ଵ𝑃ଶ𝑘ଶ𝐺௔ −  𝐺௔ඥ(𝑔௔ଵ𝐺௔𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ − 𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ𝑔௔ଵ
ଶ)

+𝑔௔ଵ𝑃ଵ𝑘ଵ𝐺௕ − 𝐺௕ඥ(𝑔௔ଵ𝐺௔𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ − 𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ𝑔௔ଵ
ଶ)

−𝑃ଵ𝑘ଵ𝑔௔ଵ
ଶ − 𝑃ଵ𝑘ଵ𝑔௔ଵ

ଶ

൲

(−𝑃ଶ𝑘ଶ𝐺௔ + 𝑔௔ଵ𝑃ଵ𝑘ଵ + 𝑔௔ଵ𝑃ଶ𝑘ଶ)
 

(84) 

 

Then we can substitute the two solutions, 𝑔௕ଵ ∗ and 𝑔௕ଵ ∗∗, in the equation 

that represents the derivative of the payoff function of player 'a', equation (81) and 

solve it equaling the expression to zero. We arrive at the same solution for the 

physical guarantee allocated by player 'a' to period 1, denoted by 𝑔௔ଵ
∗ and 𝑔௔ଵ

∗∗ , 

expressed by equation (85) below: 

 

 𝑔௔ଵ
∗ = 𝑔௔ଵ

∗∗ = 

𝐺௔ ×
𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
 

(85) 

 

The physical guarantee allocated by the player 'a' to period 2, 𝑔௔ଶ ∗, is 

obtained by subtracting the physical guarantee allocated to the period 1, 𝑔௔ଵ
∗, from 

the total physical guarantee 𝐺௔ (equation 86): 
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𝑔௔ଶ

∗ = 𝑔௔ଶ
∗∗ = 𝐺௔ − 𝐺௔ ×

𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
 

= 𝐺௔  ൬1 −  
𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
൰ = 𝐺௔  ൬ 

𝑃ଶ𝑘ଶ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
൰ 

(86) 

 

To find the physical guarantee allocated by player 'b' to period 1 we follow 

the same approach that was used for player 'a'. Equaling the payoff derivative 

function to zero ( 
ௗ𝜋𝑎

ௗ௚ೌభ
= 0) we found the expression for the 𝑔௔ଵ values. There are 

also two solutions, 𝑔௔ଵ ∗ and 𝑔௔ଵ ∗∗, that make 
ௗ𝜋𝑎

ௗ௚ೌభ
= 0, as shown in equation (87) 

and equation (88), respectively: 

 

𝑔௔ଵ ∗= 

൮

𝑔௕ଵ𝑃ଵ𝑘ଵ𝐺௔ +  𝐺௔ඥ(𝑔௕ଵ𝐺௕𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ − 𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ𝑔௕ଵ
ଶ)

+𝑔௕ଵ𝑃ଵ𝑘ଵ𝐺௕ + 𝑔௕ଵ𝑃ଶ𝑘ଶ𝐺௕ + 𝐺௕ඥ(𝑔௕ଵ𝐺௕𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ − 𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ𝑔௕ଵ
ଶ)

−𝑃ଵ𝑘ଵ𝑔௔ଵ
ଶ − 𝑃ଵ𝑘ଵ𝑔௔ଵ

ଶ

൲

(−𝑃ଶ𝑘ଶ𝐺௕ + 𝑔௕ଵ𝑃ଵ𝑘ଵ + 𝑔௕ଵ𝑃ଶ𝑘ଶ)

(87) 

 

 

𝑔௔ଵ ∗∗= 

൮

𝑔௕ଵ𝑃ଵ𝑘ଵ𝐺௔ −  𝐺௔ඥ(𝑔௕ଵ𝐺௕𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ − 𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ𝑔௕ଵ
ଶ)

+𝑔௕ଵ𝑃ଵ𝑘ଵ𝐺௕ + 𝑔௕ଵ𝑃ଶ𝑘ଶ𝐺௕ − 𝐺௕ඥ(𝑔௕ଵ𝐺௕𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ − 𝑃ଵ𝑘ଵ𝑃ଶ𝑘ଶ𝑔௕ଵ
ଶ)

−𝑃ଵ𝑘ଵ𝑔௔ଵ
ଶ − 𝑃ଵ𝑘ଵ𝑔௔ଵ

ଶ

൲

(−𝑃ଶ𝑘ଶ𝐺௕ + 𝑔௕ଵ𝑃ଵ𝑘ଵ + 𝑔௕ଵ𝑃ଶ𝑘ଶ)

(88) 

 

Substituting the two possible solutions in the equation that represents the 

derivative of the payoff function of player 'b' (equation 82), we obtain the same 

result for the expression for the physical guarantee allocated by player “b” to period 

1, denoted by 𝑔௕ଵ
∗ and 𝑔௕ଵ

∗∗ , expressed by equation (89) below: 

 

 𝑔௕ଵ
∗ = 𝑔௕ଵ

∗∗ = 

𝐺௕ ×
𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
 

(89) 
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The physical guarantee allocated by the player 'b' to period 2, 𝑔௕ଶ ∗, is 

obtained by subtracting the physical guarantee allocated to the period 1, 𝑔௕ଵ
∗, from 

the total physical guarantee 𝐺௕ (equation (90)): 

 

 
𝑔௕ଶ

∗ = 𝑔௕ଶ
∗∗ = 𝐺௕ − 𝐺௕ ×

𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
 

= 𝐺௕  ൬1 −  
𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
൰ = 𝐺௕  ൬

𝑃ଶ𝑘ଶ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
൰ 

(90) 

 

To ascertain whether the obtained values represent a Nash Equilibrium, it's 

crucial to assess whether a move made by an individual player can enhance their 

outcome at the expense of others. If the players cannot improve their result by 

individually changing their decisions, then we have the Nash Equilibrium for the 

game. This assessment involves analyzing the second derivative of the payoff 

function to determine its implications. A positive second derivative of the function 

signifies that a point where the first derivative is zero represents a local minimum. 

Conversely, a negative second derivative of the function indicates a local maximum, 

while a second derivative equal to zero renders the test inconclusive. 

For a Nash equilibrium to exist, the identified point must be a local maximum 

that cannot be negatively affected by the movements of other players and no other 

point (decision) within the function, meeting valid parameters, should yield a better 

financial outcome for the player. Hence, it's imperative to establish that this point 

represents a global maximum within the possible values of physical guarantee and 

the constraints of the problem. 

The second derivative of the payoff function for player 'a' and player 'b' is 

shown in equation (91) and equation (92), respectively: 

 

 𝑑ଶ𝜋𝑎

𝑑𝑔௔ଵ
ଶ =

𝑃ଵ𝑘ଵ𝑔௔ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଷ
−

2𝑃ଵ𝑘ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଶ
+

2𝑃ଶ𝑘ଶ(𝐺௔ − 𝑔௔ଵ)

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଷ

−  
2𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଶ
 

(91) 
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 𝑑ଶ𝜋𝑏

𝑑𝑔௕ଵ
ଶ =

2𝑃ଵ𝑘ଵ𝑔௕ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଷ
−

2𝑃ଵ𝑘ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଶ
+

2𝑃ଶ𝑘ଶ(𝐺௕ − 𝑔௕ଵ)

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଷ

−  
2𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଶ
 

(92) 

 

 The second derivative of the payoff function is always negative for the range 

of possible values of 𝑔௔ଵ and 𝑔௕ଵ, for both players, considering that all variables 

are positive, 𝐺௔ ≥ 𝑔௔ଵ and 𝐺௔ ≥ 𝑔௔ଵ. We are going to prove for 
ௗమ𝜋𝑎

ௗ௚ೌభ
మ but the same 

procedure can be done for 
ௗమ𝜋𝑏

ௗ௚್భ
మ. 

Let’s start analyzing the first 2 terms of  
ௗమ𝜋𝑎

ௗ௚ೌభ
మ and rewrite them appropriately, 

as shown in equation (93): 

 

 2𝑃ଵ𝑘ଵ𝑔௔ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଷ
−

2𝑃ଵ𝑘ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଶ
= 

2𝑃ଵ𝑘ଵ

(𝑔௔ଵ + 𝑔௕ଵ)ଶ
× ൬

𝑔௔ଵ

𝑔௔ଵ + 𝑔௕ଵ
− 1൰ 

(93) 

 

As all the variables are positive, the expression 
ଶ௉భ௞భ

(௚ೌభା௚್భ)మ
 must be also 

positive. The expression 
௚ೌభ

௚ೌభା௚್భ
≤ 1, as 𝑔௔ଵ and 𝑔௕ଵ are positive values. So the 

expression 
௚ೌభ

௚ೌభା௚್భ
− 1 must be negative and also the expression 

ଶ௉భ௞భ

(௚ೌభା௚್భ)మ
×

ቀ
௚ೌభ

௚ೌభା௚್భ
− 1ቁ. Then we know that the first 2 terms of 

ௗమ𝜋𝑎

ௗ௚ೌభ
మ represent a negative 

value. 

Then we analyze the last 2 terms of 
ௗమ𝜋𝑏

ௗ௚್భ
మ and rewrite them appropriately, as 

shown in equation (94): 

 

 2𝑃ଶ𝑘ଶ(𝐺௔ − 𝑔௔ଵ)

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଷ
−  

2𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଶ
= 

2𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕ − 𝑔௔ଵ − 𝑔௕ଵ)ଶ
× ൬

𝐺௔ − 𝑔௔ଵ

𝐺௔ − 𝑔௔ଵ + 𝐺௕ − 𝑔௕ଵ
− 1൰ 

(94) 
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As all the variables are positive, 𝐺௔ − 𝑔௔ଵ ≥ 0 and 𝐺௕ − 𝑔௕ଵ, the expression 

ଶ௉మ௞మ

(ீೌାீ್ି௚ೌభି௚್భ)మ
 must be also positive. The expression 

ீೌି௚ೌభ

ீೌାீ್ି௚ೌభି௚್భ
≤ 1, as 

𝐺௔ − 𝑔௔ଵ and 𝐺௕ − 𝑔௕ଵ are positive values. So the expression 
ீೌି௚ೌభ

ீೌି௚ೌభାீ್ି௚್భ
− 1 

must be negative and also the expression  
ଶ௉మ௞మ

(ீೌାீ್ି௚ೌభି௚್భ)మ
× ቀ

ீೌି௚ೌభ

ீೌି௚ೌభାீ್ି௚್భ
− 1ቁ. 

Then we know that the first 2 and the last 2 terms of 
ௗమ𝜋𝑎

ௗ௚ೌభ
మ represent a negative 

value. So 
ௗమ𝜋𝑎

ௗ௚ೌభ
మ is negative for all possible values of 𝑔௔ଵ and 𝑔௕ଵ. This indicates that 

the point where the first derivative of the function is equal to zero is a global 

maximum as there is no point where the curve changes the concavity form concave 

to convex, as the second derivative is always negative within the range of possible 

values of physical guarantee. 

Using the same approach, we can prove that 
ௗమ𝜋𝑏

ௗ௚್భ
మ is negative for all the 

possible values of values of 𝑔௔ଵ and 𝑔௕ଵ considering the constraints for the 

optimization problem. Therefore, the solution for the seasonalization problem 

expressed by equation (85), equation (86) (optimal solution for player 'a'), equation 

(89) and equation (90) (optimal solution for player 'b') is also the Nash Equilibrium 

as it represents the set of strategies in which, each player cannot individually get 

their individual result (payoff) better by changing the strategy, unilaterally. 

The Nash Equilibrium for the physical guarantee seasonalization game with 

2 players and 2 periods is shown in Table 6: 

 

 Period 1 
Physical Guarantee 

Period 2 
Physical Guarantee 

Player a 
𝐺௔ ×

𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
 𝐺௔ ×

𝑃ଶ𝑘ଶ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
 

Player b 
𝐺௕ ×

𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
 𝐺௕ ×

𝑃ଶ𝑘ଶ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
 

 

Table 6 – Nash Equilibrium for the physical guarantee seasonalization game 

 

It is possible to calculate the GSF for the Nash Equilibrium for period 1 and 

period 2 using the physical guarantee from the Nash Equilibrium and the equation 

(71) for 𝑛 = 2. The equation (95) and equation (96) show the GSF for period 1 and 

period 2 respectively: 
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𝐺𝑆𝐹ଵ =

𝑘ଵ

𝑔௔ଵ
∗ + 𝑔௕ଵ

∗
=  

=
𝑘ଵ

𝐺௔ ×
𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
+ 𝐺௕ ×

𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

 

=
𝑘ଵ

(𝐺௔ + 𝐺௕) ×
𝑃ଵ𝑘ଵ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

=
𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕) × 𝑃ଵ
 

(95) 

 

 
𝐺𝑆𝐹ଶ =

𝑘ଶ

𝑔௔ଶ
∗ + 𝑔௕ଶ

∗
=  

=
𝑘ଶ

𝐺௔ ×
𝑃ଶ𝑘ଶ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ
+ 𝐺௕ ×

𝑃ଶ𝑘ଶ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

 

=
𝑘ଶ

(𝐺௔ + 𝐺௕) ×
𝑃ଶ𝑘ଶ

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

=
𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕) × 𝑃ଶ
 

(96) 

 

3.2.3  
The energy equivalent prices 

When the GSF is below one for a certain period, it means that the system was 

not capable of generating the total energy to supply the physical guarantee allocated 

during that period. This will affect the payoff, as the physical guarantee allocated 

for the period is multiplied by the GSF value when the payoff is calculated, as 

shown in equation (72). So, even if the player allocated the exact amount of the 

contracted energy, the GSF below 1 will cause a shortfall, as explained previously. 

Therefore, the actual revenue does not depend only on the price and the allocated 

physical guarantee but the price in conjunction with the GSF. The energy price 

multiplied by the GSF and multiplied by the physical guarantee is the actual revenue 

that the player expects to receive when he allocates the physical guarantee to a 

month. We can interpret that the GSF multiplied by the energy price for the month 

is the actual price that the player will deal for the allocated physical guarantee, that 

we will denote Equivalent Price (EP). The payoff function in terms of EP is shown 

in equation (97): 
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𝜋௜ =  ෍ 𝑃௝ ∙ ൣ൫𝑔௜௝ × 𝐺𝑆𝐹௝൯ − 𝐶௜௝൧

ଵଶ

௝ୀଵ
 

= ෍ 𝑃௝ × 𝑔௜௝ × 𝐺𝑆𝐹௝ − 𝑃௝ × 𝐶௜௝

ଵଶ

௝ୀଵ
 

= ෍ 𝐸𝑃௝ × 𝑔௜௝ − 𝑃௝ × 𝐶௜௝

ଵଶ

௝ୀଵ
 

(97) 

 

The Equivalent Price of Nash Equilibrium has an interesting feature, which 

will help in obtaining the optimal solution to the problem with different periods and 

different participants: for all periods, the equivalent price is the same. The 

interpretation is that the equivalent prices need to be equal because, otherwise, there 

would be an opportunity for arbitration on the part of one or more players, and with 

this, an opportunity to individually improve the result, which cannot occur in the 

Nash Equilibrium. Therefore, the equivalent prices need to be equal to guarantee 

the Nash Equilibrium and avoid any opportunity for a unilateral movement by any 

player, which would improve their result. For the simplified example featuring two 

time periods (1 and 2) and involving two participants, 'a' and 'b', the equivalent 

prices for period 1 and period 2 are shown in equation (98) and equation (99), 

respectively: 

 

 𝐸𝑃ଵ =  𝑃ଵ × 𝐺𝑆𝐹ଵ 

= 𝑃ଵ ×
𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕) × 𝑃ଵ
=

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

𝐺௔ + 𝐺௕
 

(98) 

  

 𝐸𝑃ଶ =  𝑃ଶ × 𝐺𝑆𝐹ଶ 

= 𝑃ଶ ×
𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

(𝐺௔ + 𝐺௕) × 𝑃ଶ
=

𝑃ଵ𝑘ଵ + 𝑃ଶ𝑘ଶ

𝐺௔ + 𝐺௕
 

(99) 

 

 

The same approach used to determine the equivalent prices for 𝑛 players and 

𝑚 periods. The equivalent price for the general case is determined by equation 

(100): 



93 
 

 

 𝐸𝑃௝ =  𝑃௝ × 𝐺𝑆𝐹௝  

= 𝑃௝ ×
∑ 𝑃௝𝑘௝

௠
௝ୀଵ

(∑ 𝐺௜
௡
௜ୀଵ ) × 𝑃௝

=
∑ 𝑃௝𝑘௝

௠
௝ୀଵ

∑ 𝐺௜
௡
௜ୀଵ

 

(100) 

 

3.2.4  
Physical guarantee seasonalization for the SIN 

The equivalent prices are the key to the optimization of physical guarantee 

seasonalization for the Brazilian System. As the equivalent prices are the same for 

all the periods when the players choose the Nash Equilibrium strategies, we can 

calculate the equivalent price of Nash Equilibrium (𝐸𝑃∗) using equation (100) and 

them determinate the GSF for each month (equation (101)): 

 

 
𝐺𝑆𝐹௝ =  

𝑃௝

𝐸𝑃∗
 

(101) 

 

Then we can use equation (71) to determine the total physical guarantee (Γ௝) 

allocated to each month (equation (102)): 

 

 
𝐺𝑆𝐹௝ =  

𝑃௝

𝐸𝑃∗
=

∑ 𝜏௜௝
௡
௜ୀଵ

∑ 𝑔௜௝
௡
௜ୀଵ

∴ 

𝑃௝

𝐸𝑃∗
=

𝑘௝

∑ 𝑔௜௝
௡
௜ୀଵ

∴ 

෍ 𝑔௜௝

௡

௜ୀଵ

=
𝑘௝ × 𝐸𝑃∗

𝑃௝
 

Γ௝ =
𝑘௝ × 𝐸𝑃∗

𝑃௝
 

(102) 

 

The physical guarantee allocated by each player can be easily determined, as 

we know the contribution of each player to the total physical guarantee. The 

procedure is to determine, for the player 𝑗, the percentage of the total physical 

guarantee (%𝑇𝐹𝐺௜) using equation (103) and then apply the same percentage to 

each month to find the seasonalized physical guarantee for the player. 
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%𝑇𝐹𝐺௜ =  

𝐺௜

∑ 𝐺௜
௡
௜ୀଵ

 
(103) 

 

Then monthly physical guarantee that the player will allocate is determined 

by equation (104) below: 

 

 
𝑔௜௝ =  %𝑇𝐹𝐺௜ ×

𝑘௝ × 𝐸𝑃∗

𝑃௝
 

(104) 

 

3.3 
Seasonalization game for the Brazilian interconnected system 

To apply the suggested game approach to the Brazilian Interconnected System 

(SIN-Sistema Interligado Nacional) we need to estimate the settlement price of the 

differences (PLD) for each month and the generation of the hydroelectric power 

plants in the system. The generation of hydroelectric plants in the system can be 

obtained by difference. There are other sources of energy that contribute to the 

system generation, so the hydroelectric plants generation is obtained subtracting the 

generation of other sources of energy from the system energy load. The agents' 

monthly income will depend on the generation of the hydroelectric plants (𝜂௝), and 

also from the result of the GSF and the decision to seasonalize each agent. The 

generation for each month 𝑗 can be determined using equation (105). 

 

 𝜂௝ = 𝜀௝ − ൫𝜁௝ + 𝜔௝ + 𝛽௝ + 𝜙௝ + 𝑠௝൯ (105) 

 

where 𝜀௝ is the energy load, 𝜁௝  is the thermal generation,  𝜔௝  is the wind generation, 

𝛽௝ is the biomass generation, 𝜙௝  is the solar generation, 𝑠௝ represents the generation 

of small hydroelectric plants. 

 

The GSF for month 𝑗 is obtained from the division of the generation (𝜂௝)  by 

the seasonalized physical guarantee (Γ௝) for the whole system, as shown in equation 

(106). The seasonalized physical guarantee for the system is determined by the sum 

of seasonalized physical guarantees of each agent as shown in equation (107). 
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 𝐺𝑆𝐹௝ =
𝜂௝

Γ௝
 (106) 

 

 
Γ௝ =  ෍(ℊ௜௝)

௡

௜ୀଵ

 
(107) 

 

The generation needs to be estimated for each period and to estimate it, is 

necessary to estimate the energy load, the thermal generation, the wind generation, 

the biomass generation, the solar generation and the generation of small 

hydroelectric plants (PCH – Pequenas Centrais Hidrelétricas). There is an energy 

load forecast that is public and done by ONS. However, for this work, a model of 

Self-regressive Integrated Mobile Average (ARIMA) forecast with an exogenous 

variable was adjusted to identify the occurrence of regime change. The periods of 

crisis generate a demand shock and cause generation to decrease substantially, 

lowering energy prices sharply.  

The other parameters to estimate the gross generation (thermal generation, 

wind generation, biomass generation, solar generation, and generation of small 

hydroelectric plants) are obtained from the reports published by the Electrical 

Energy Clearing Chamber and EPE. These reports are public and periodically 

updated by the entities responsible for managing the system. After the load forecast 

and the consolidation of data regarding other energy sources, the next step is to 

determine, for each month, the generation of the hydroelectric plants using the 

equation (105). 

Then we apply the equation 100 to determine the equivalent prices, that will 

be the same for each month. After that we calculate the GSF for each month, using 

equation 101. The seasonalized physical guarantee for the system is determined 

using equation 102. Equation 103 is used to determine the percentage of the 

physical guarantee that is added by each system participant. Finally, the equation 

104 is used to determine the seasonalization of the physical guarantee for each 

month for each participant. 

We can also consider the opportunity cost by adding a monthly intertemporal 

discount rate (r) (equation (108)). For the numerical application we decided to not 
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use de discount rate as the difference of equivalent prices would small between 

months. 

 

 
𝐺𝑆𝐹௝ × 𝑃𝐿𝐷௝  =  

𝐺𝑆𝐹௝ାଵ × 𝑃𝐿𝐷௝ାଵ

1 + 𝑟
,                𝑗 = 1, … ,11 

(108) 

 

1.1.3.4  
Numerical application 

For the numerical application we selected an important player in Brazil. The 

application of our optimization model was carried out in collaboration with the 

company's management team, ensuring close oversight throughout the process. To 

tailor the model to our specific needs, we initiated the process by utilizing load 

forecasts for the Brazilian Interconnected System (SIN). These forecasts were 

divided into two distinct time series: one for training the forecasting model and the 

other for testing its performance. The training series covers the period from January 

1999 to December 2017, while the test series spans from January 2018 to April 

2020.  

We conducted the model fitting using Python 3.8 (64-bit) software, 

employing the pmdarima 1.6.0 module and the auto_arima function. The selection 

of the optimal model was based on the Akaike Information Criterion (AIC), where 

the model with the lowest AIC was chosen. In this case, the selected model was 

SARIMA with the following parameters: order = (0, 1, 0) and seasonal_order = (1, 

0, 1, 12). 

The remaining parameters necessary for estimating gross energy generation 

were sourced from reports published by the CCEE (Câmara de Compensação de 

Energia Elétrica) and EPE (Empresa de Pesquisa Energética). 

The energy load forecast, generated through our SARIMA model, served as 

input for calculating the generation of hydroelectric plants (𝜂௝) using equation 105. 

Table 7 presents the load (𝜀௝) forecasts produced by our SARIMA model, as well 

as other forecasts obtained from CCEE and EPE, including thermal generation (𝜁௝), 

wind generation (𝜔௝), biomass generation (𝛽௝), solar generation (𝜙௝), and small 

hydroelectric plants generation (𝑠௝)  (CCEE, 2020; EPE, 2020c; ONS, 2020). These 

forecasts were generated on December 5th, 2020. 
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 Jan Feb Mar Apr Mai Jun 
𝜀 71,139 72,152 72,017 70,687 69,406 68,879 
𝜁 10,901 8,139 8,152 6,190 6,273 6,982 
𝜔 6,423 4,544 4,480 5,093 6,584 8,388 
𝛽 824 760 798 771 783 816 
𝜙 1,790 1,760 2,150 3,929 4,902 5,286 
𝑠 1,511 1,527 1,548 1,397 1,306 1,193 
𝜼 49,690 55,422 54,889 53,307 49,558 46,214 
 

 Jul Aug Sep Oct Nov Dec 
𝜀 68,855 69,665 70,439 71,066 71,119 71,039 
𝜁 7,206 7,974 8,418 8,070 7,619 6,802 
𝜔 8,851 10,136 10,269 9,650 9,003 7,711 
𝛽 843 922 1,027 970 950 968 
𝜙 5,520 5,628 5,548 5,215 4,586 2,959 
𝑠 1,011 883 884 1,060 1,303 1,447 
𝜼 45,424 44,122 44,293 46,101 47,658 51,152 

Table 7 – The energy load forecast and estimation for system generation (Avg MW) 

  

The PLD generation forecast was conducted using the NEWAVE software, a 

government-developed tool accessible to all agents. The forecast generated is the 

same for all agents, given the same inputs. We used the 2000 series forecasted for 

PLD by NEWAVE and calculated the expected spot price for each month. We used 

expected PLD values (E(P)) obtained from NEWAVE generated on December 5th, 

2020 (Table 8). 

 

 Jan Feb Mar Apr Mai Jun 
E(P) 255.48 206.30 179.50 165.74 142.68 161.54 

Hours (H) 744 672 744 720 744 720 
       
 Jul Aug Sep Oct Nov Dec 

E(P) 202.48 207.25 221.74 233.68 219.20 151.66 
Hours (H) 744 744 720 744 720 744 

Table 8 – NEWAVE PLD expected values (E(P)) (BRL/MWh) for 2021  

Note: Forecast generated on December 5th, 2020. 

 

In our optimization process for the year 2021, we employed an average total 

physical guarantee of 58,202 megawatts. This value was sourced from MRE (EPE, 

2020a). It's essential to note that the estimated gross generation, which stands at an 

average of 48,945 megawatts, falls short of the total system's physical guarantee. 

This shortfall indicates an overall deficit within the system, which is poised to have 

adverse implications on the results and payoffs for system participants. 
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We applied the procedure described in last section and set upper and lower 

boundaries of physical guarantee using MRE data to not exceed maximum and 

minimum seasonalization restrictions. 

The seasonalized physical guarantee Γ௝, the GSF for each month and the 

equivalent prices (EP) are shown in Table 9: 

 

 Jan Feb Mar Apr Mai Jun 
Γ 77,530 69,827 60,172 53,958 43,183 45,593 

GSF 0.64 0.79 0.91 0.99 1.15 1.01 
EP 163.74 163.74 163.74 163.74 163.74 163.74 

       
 Jul Aug Sep Oct Nov Dec 

Γ 56,171 55,846 59,982 65,792 63,800 51,152 
GSF 0.81 0.79 0.74 0.70 0.75 1.08 
EP 163.74 163.74 163.74 163.74 163.74 163.74 

Table 9 – Seasonalization of physical guarantee outcomes 

Note: seasonalized physical guarantee ( (Avg MW) GSF for each month and equivalent 

prices (EP) (BRL/MWh) obtained from optimization process. 

 

The seasonalized physical guarantee (Γ௝) for the system, as well as the 

Generation Scaling Factor (GSF) and equivalent prices (EP) derived from the 

optimization process, serve as crucial inputs for conducting the seasonalization 

process by the agents (players).  The chosen player for the numerical application 

possesses an installed capacity of 700 average Megawatts, with a corresponding 

physical guarantee of 500 average Megawatts. By considering the proportion of the 

total physical guarantee contributed by this player to the entire system, we can 

determine the optimal allocation of physical guarantee for the player, along with the 

associated monthly payoffs in BRL MM. These results are outlined in Table 10, 

considering the contracted amount (C) for the player. 

 

 Jan Feb Mar Apr Mai Jun 
Γ 666 600 517 464 371 392 
C 475 450 450 390 390 390 
𝜋 -9.15 3.62 2.88 8.11 3.79 0.82 
       

 Jul Aug Sept Oct Nov Dec 
Γ 483 480 515 565 548 407 
C 400 430 430 430 430 425 
𝜋 -1.47 -7.86 -7,9 -5.9 -3.25 1.63 

Table 10 – Physical guarantee allocation (Avg MW), amount contracted (C) (Avg MW) 
and the monthly payoffs (BRL MM) 
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The player total payoff for the seasonalization game is BRL -14.68 MM. This 

value is consistent with prediction for the system condition, where the gross 

generation will be substantially lower than the physical guarantee. 

The Figure 12 shows the seasonalized physical guarantee, the contracted 

amount, and the GSF-corrected seasonalization. The GSF-corrected seasonalization 

is obtained multiplying the physical guarantee allocated to the month by the 

computed GSF for that month. It represents the revenue of the player, in terms of 

average MW, already considering the GSF effects. The results consider the 

optimization of the equivalent price for the whole system. 

 

 

3.2  
Conclusion 

The seasonalization of physical guarantees is a critical annual process for 

hydroelectric plants. It grants agents the flexibility needed to align their physical 

guarantees with their contractual obligations. This process resembles a strategic 

game, where individual decisions impact other Market Risk Exposure (MRE) 

participants by influencing the Gross Settlement Figure (GSF), a factor that directly 

affects participants' revenue. 

Typically, risk-averse participants tend to align their seasonalization process 

closely with their contract profiles. This cautious approach aims to minimize the 

risk associated with variations in the PLD due to discrepancies between the physical 

Figure 12 – Seasonalization of physical guarantee decision for an actual player of 
the Brazilian market 
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guarantee and the contract terms. However, this strategy doesn't optimize outcomes 

nor fully shield participants from GSF-related risks. 

Our research reveals an optimal strategy that simultaneously maximizes a 

player's results while safeguarding them from potential reductions in payoffs 

resulting from other participants' actions. This strategy revolves around achieving 

equal equivalent prices, where the equivalent price for a given month is determined 

by multiplying the GSF by the PLD. Remarkably, this strategy, which optimizes 

payoffs, is also the most conservative and is advisable even for risk-averse 

participants. 

In our study, we applied this optimization model to a key market player. We 

designed a proprietary model to predict energy demand and estimate gross energy 

generation, employing a Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model with dummies. The player authorized and monitored our model's 

application, and the results significantly informed their seasonalization process for 

the year 2021. 

Regulatory considerations remain a pivotal concern, given the sector's 

evolving landscape. As the industry undergoes substantial changes, the mechanisms 

for risk control and sharing may also evolve. Consequently, adjustments to our 

proposed model may become necessary soon. 

For future research, we propose evaluating the seasonalization game 

formulation using utility as a payoff metric, which would be determined based on a 

participant's risk profile, rather than focusing solely on financial returns. 

Additionally, exploring the existence of a Nash equilibrium and identifying 

dominant strategies within this context could further enhance our understanding of 

this complex process. In future research, it also may be valuable to examine the 

equilibrium by considering energy load and PLD forecasts as stochastic variables. 

This approach could potentially yield novel insights distinct from those presented 

in this current study. 
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4  
Optimizing Electrical Energy Commercialization: A 
Decision-Making Model for Hedge Transactions 

4.1 
Introduction 

In the 1990s, a transformative wave of restructuring swept through the global 

electricity sector, ushering in the era of competitive electricity markets (Joskow, 

2006). In Brazil, this transformation took shape with the launch of the Restructuring 

Project of the Brazilian Electricity Sector (Reestruturação do Setor Elétrico 

Brasileiro – RE-SEB Project), spearheaded by the Ministry of Mines and Energy 

(MME). This groundbreaking initiative led to the creation of a free energy 

marketplace, uniting generators, marketers, and energy-conscious consumers. 

Subsequently, the Free Contracting Environment emerged, allowing these 

stakeholders to freely negotiate bilateral contracts for energy procurement and 

sales, all within the bounds of established regulations and guidelines (CCEE, 2021). 

Given the inherent volatility of electricity spot prices, market participants 

naturally seek ways to mitigate their exposure to price fluctuations (Luz et al., 2012; 

Matsumoto & Yamada, 2021) by negotiating forward contracts. Conversely, in 

certain countries, market restructuring has given rise to broader free markets and 

energy exchanges, where a wide array of energy derivatives is traded for hedging 

purposes. 

Within the electricity sector, including players such as generators, traders, and 

consumers, it's not uncommon to find individuals or entities in a short position due 

to various factors. This situation can arise for a multitude of reasons, including 

power generation shortfalls due to low levels of Natural Energy Inflow (Energia 

Natural Afluente – ENA) or reservoir level reductions during droughts (in the case 

of hydroelectric generators), uncertainty in wind speed (for wind generators), 

speculative motives (for traders), and construction delays in new power plants. 

Consequently, these participants are compelled to engage in spot market energy 
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purchases to meet their contractual commitments, thereby exposing themselves to 

price risk. 

One viable strategy for these participants is to hedge against risk by entering 

forward contracts, allowing them to secure part or all of their position at a 

predetermined price. If the hedge is only partial, the remaining balance must be 

settled at the spot price upon maturity, referred to as the Price Differences 

Settlement (Preço de Liquidação das Diferenças – PLD), which exposes the 

participant to energy price variations. Conversely, a full hedge eliminates this risk 

but also precludes the possibility of capitalizing on favorable spot market price 

movements. 

This article endeavors to scrutinize the decision-making process concerning 

hedge operations, with the goal of maximizing the participant's profits while 

maintaining a certain level of risk protection. To this end, we assume that the 

participant's risk aversion can be quantified through α percentiles of Value at Risk 

(VaR). As such, the primary contribution of this study is the development of a 

decision support tool tailored to market participants in a short position in the 

electricity market, considering their willingness to pay for risk protection and the 

associated transaction costs. 

The structure of this article is as follows: after this introduction, we present 

an extensive review of the relevant literature in the field. Section 3 delves into the 

development of a decision-making model for hedge transactions in electrical energy 

commerce. In Section 4, we present a numerical application and engage in a 

comprehensive discussion of the results. Finally, we conclude our analysis. 

 

4.2 
Utility functions and risk hedging in electricity markets: a literature 
review 

According to Oliveira, Arfux, and Teive (2006), in a competitive electricity 

market environment, risk analysis is an essential tool to guide investors in the 

decision-making process, considering both contract uncertainties and spot market 

energy prices. In their study, they propose three risk measures: mean variance, 

maximum loss, and maximum average loss, applied to the issue of energy 

commercialization for investment analysis purposes. The results indicate that these 

measures complement the techniques presented by Markowitz  (1952) and the 
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theories of Value at Risk (VaR) and Conditional Value at Risk (CVaR), thereby 

improving the quality of decision-making in the field of energy commercialization. 

Luz (2016) asserts that in the electricity market, it is necessary to determine 

performance and risk measures that can assist in decision-making and to extract 

functions from these measures for the calculation of risk premiums, which can serve 

as a guide for pricing hedge operations. Following this rationale, Benth, Cartea, and 

Kiesel (2008) provide a framework that enables us to explain how the risk 

preferences of market players explain the sign and magnitude of the market risk 

premium across different forward contract maturities. When considering the 

German electricity market, the authors observe that the producer's market power 

and the market risk premium exhibit a term structure that decreases as the time to 

maturity of the forward contract increases. 

Deng and Oren (2006) argue that exposure to energy price risks can generate 

devastating consequences for agents in the electricity sector. The authors analyze 

different types of financial instruments that allow the sharing and control of these 

risks through appropriately structured hedge strategies and conclude that the main 

challenge in the electricity market is to increase its liquidity, using derivatives for 

economic efficiency. On the other hand, Pineda, Conejo, and Carrión (2010) 

analyze a specific financial instrument that is widely used as risk mitigation tool: 

the insurance contracts. They evaluate the convenience of signing an insurance 

contract against unexpected failures in electricity production units and their impact 

on contracting decisions through a stochastic programming model. Their findings 

indicate that insurance reduces financial risk and that the greater the risk aversion, 

the greater the value (premium) that the producer is willing to pay for a particular 

insurance contract. 

Other studies propose their own risk mitigation strategies. For example, 

Cotter and Hanly (2010) developed a GARCH-in-Mean model to estimate a time-

varying coefficient of relative risk aversion based on the observed risk preferences 

of both short and long energy hedgers. Their empirical results show that, when 

explicit risk aversion is taken into consideration, there are significant differences in 

expected utility and risk-minimizing hedge strategies. Additionally, they find that, 

in general, long hedgers are more risk-averse than short hedgers. Woo, Horowitz, 

and Hoang (2001) also developed an innovative tool to address the challenge of a 

risk-averse energy trader who offers a fixed-price forward contract to provide 
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electricity purchased from a potentially volatile and unpredictable fledgling spot 

energy market. This tool is based on a cross-hedging strategy that reduces the 

contract's profit variance and determines the forward-contract price as a risk-

adjusted price. 

Oum and Oren (2010) proposed a method to mitigate volumetric risk faced 

by regulated load-serving entities (LSEs) and traders of default service contracts 

when providing load-following services to their customers at fixed or regulated 

prices while purchasing electricity or facing an opportunity cost at volatile 

wholesale prices. They extended the work developed by Oum and Oren (2009) and 

presented a static hedging strategy for the LSE's retail positions using electricity 

standard derivatives such as forwards, calls, and puts. The authors determined the 

optimal hedging strategy based on expected utility maximization, and through 

several numerical examples, they demonstrated the impact of each price-based 

financial energy instrument on portfolio optimization. 

Zhang and Wang (2009)  assert that effective risk management fosters well-

functioning electricity markets. They demonstrate, through a risk-constrained 

electricity procurement model based on the CVaR methodology, that hedge 

contracts, serving as price protection products, offer customers financial or physical 

insurance against their exposure to energy price risk. This comes in exchange for a 

risk premium they are willing to pay. Since a utility function is a suitable tool to 

consider customer preferences regarding decisions under uncertainty, in a recent 

study, Niromandfam, Yazdankhah, and Kazemzadeh (2020) apply principles of the 

utility function to identify the preferences and behavior of agents in the electricity 

sector concerning various risk hedging contracts. Their results suggest that the 

proposed risk hedging mechanism reduces the average market price of electricity 

and its fluctuations, enabling customers to manage electricity costs effectively. 

In a study closely related to ours, Cotter and Hanly (2012) also emphasize 

that a key issue in the estimation of energy hedges is the hedgers' attitude towards 

risk, which is encapsulated in the form of the hedgers' utility function. They address 

this issue by estimating and applying energy market-based risk aversion to three 

different utility functions: quadratic, exponential, and logarithmic. Their results 

show that significant differences exist between hedge strategies depending on the 

risk attitudes of energy hedgers as represented by different utility functions. Like 

these authors, we extend the literature in this field and address the issue of how an 



105 
 

agent in the electricity sector, exposed to variations in energy prices, can optimally 

hedge their commercialization decision. However, we propose a tool to support the 

hedge decision for these agents, considering a preference function that allows 

modeling the variation of the risk aversion level of an agent across different 

preference bands. 

 

4.2 
Quantifying risk aversion: a preference function approach 

 

We present a novel model founded upon a preference function, facilitating the 

exploration of variations in an agent's risk aversion level across different preference 

bands. Central to this model is the imperative task of risk assessment, achieved 

through the utilization of measures such as VaR (Value at Risk), CVaR (Conditional 

Value at Risk), and ES (Expected Shortfall). In accordance with Jorion's seminal 

work (1996), 𝐶𝑉𝑎𝑅ఈ represents the expected loss beyond the 𝑉𝑎𝑅ఈ threshold, 

which is established as the maximum acceptable risk level at a given confidence 

level α. 

Despite its widespread adoption, VaR has encountered criticism for its 

limitations, particularly in instances where it fails to adequately account for sub-

aggregation issues arising from specific conditions within the financial position 

distribution. 

The equation (109) and equation (110) provide definitions for 𝑉𝑎𝑅ఈ and 

𝐶𝑉𝑎𝑅ఈ, respectively, emphasizing their absolute values. It is noteworthy that in 

many cases, these definitions are conventionally presented with values in their 

absolute form, as they inherently denote negative values, signifying potential losses 

from a risk perspective. 

 

 𝑉𝑎𝑅ఈ(𝑋) = 𝑖𝑛𝑓{𝑚|𝑃[𝑋 − 𝑚 > 0] ≤ 𝛼} 

= 𝑖𝑛𝑓{𝑚|𝑃[𝑋 − 𝑚 < 0] ≤ 1 − 𝛼} 

(109) 

 

 𝐶𝑉𝑎𝑅ఈ(𝑋) = 𝐸[𝑋|𝑋 ≤ 𝑉𝑎𝑅ఈ] 

=
1

1 − 𝛼
න 𝑥𝑓(𝑥)𝑑𝑥 =

௏௔ோഀ

ି∞

1

1 − 𝛼
න 𝑉𝑎𝑅௨(𝑋)𝑑𝑢

ଵିఈ

଴

 

(110) 
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where 𝛼 ∈ [0,1[ and 𝑚 ∈  ℝ. 

 

 We used the preference functional introduced by Luz (2016), enabling us to 

model the fluctuations in an agent's risk aversion level while accommodating 

various preference bands. The preference functional is formally defined within 

equation (111): 

 

 
𝐸𝐶𝑃_𝐺⬚ఈ,ఒ

=  𝐸[𝑢(𝑥෤)] = 𝜆଴𝐸(𝑥෤) + ෍ 𝜆௡𝐶𝑉𝑎𝑅ఈ೙

ே

௡ୀଵ
; 

(111) 

 
𝜆௡ ≥ 0 𝑎𝑛𝑑 ෍ 𝜆௡

ே

௡ୀଵ
= 1 

 

 

Considering that the agents are in a short position in the electricity market, 

the financial position 𝑋 can be expressed by equation (112): 

 

 
𝑋 = ෍[(−(1 − 𝛿)𝜋௧ − 𝛿𝜙௧ + 𝜒)𝜐௧𝜂௧]

ఛ

௧ୀଵ

 
(112) 

 

where 𝛿represents the percentage of the purchase decision of the hedge transaction; 

𝜋௧ is the spot energy price (BRL/MWh); 𝜙௧ is the future price estimated by the 

forward energy price curve (BRL/MWh);𝜒is the opportunity cost (BRL/MWh); 

𝜐௧ is the uncontracted amount (MW); and 𝜂௧is the number of hours in month 𝑡. 

 

From the utility function developed by Luz (2016), we can define the 

Certainty Equivalent (𝜑)  and the Risk Premium (𝛾), which are presented, 

respectively, in equation (113) and equation (114). The Certainty Equivalent reflects 

the situation of the agent's indifference between hedging and being exposed to the 

energy price risk. On the other hand, the Risk Premium is the difference between 

the average of the financial position 𝑋 and the Certainty Equivalent, which 

represents the premium required by the hedge transaction. 
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𝜑 = 𝑈ିଵ(𝐸[𝑈(𝑋)]) = 𝑈ିଵ(𝜆଴𝐸[𝑋] + ෍ 𝜆௡𝐶𝑉𝑎𝑅ఈ೙

(𝑋)

ே

௡ୀଵ

) 
(113) 

 

 
𝛾 = 𝐸[𝑋] − 𝜑 

(114) 

 

To parametrize the ECP_G function, we use the AHP method, since it is based 

on the decomposition and synthesis of the peer-to-peer relationships among criteria. 

This method seeks to prioritize alternatives by distilling them into a single measure 

of performance, as elucidated by Saaty (1991). The AHP method offers several 

notable advantages, including its flexibility, simplicity, intuitive appeal to decision-

makers, and the hierarchical organization of criteria based on their assigned 

attributes, as corroborated by Ishizaka and Labib (2011), Macharis et al. (2004), 

and Ramanathan (2001). 

The AHP methodology recommends a systematic approach, beginning with 

the identification of the problem, the delineation of its objectives, the enumeration 

of available alternatives, the specification of decision-making criteria, and the 

designation of decision-makers. Subsequently, it involves a critical phase in which 

decision-makers assess the relative importance of each criterion in relation to the 

others, culminating in the construction of a judgment matrix. Finally, normalization 

of these judgments is carried out, yielding weight matrices that assign values to 

pairwise comparisons (preference matrices) and to each of the criteria initially 

defined in the process. 

In assessing the validity of the weight matrices, Saaty (1991) introduced two 

crucial metrics: the average consistency index (CI) and the consistency ratio (CR). 

According to the author's stipulation, if the resulting consistency ratio falls within 

or below the 10% threshold, it indicates acceptable consistency within the pairwise 

comparison matrix, affirming the validity of the derived weights for practical use. 

The equation (115) and the equation (116)  provide the formal expressions for these 

pivotal measures: 

 

 
𝐶𝐼 =

𝜆௠௔௫ − 𝑛

𝑛 − 1
 

(115) 
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𝐶𝑅 =

𝐶𝐼

𝑅𝐼(𝑛)
 

(116) 

 

 

where  𝜆௠௔௫ is the major eigenvalue of the judgment matrix, 𝑛 is the order of the 

judgment matrix and  𝑅𝐼(𝑛) is the random consistency index for matrices of order 

𝑛, which approximate the results found by Saaty (1991), described in Table 11: 

 

𝒏 3 4 5 6 7 8 9 10 
𝑅𝐼(𝑛) 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

Table 11 – Random consistency indices 

Source: Saaty (1991) 

 

To illustrate the application of the proposed model, we employ a numerical 

example focusing on a prominent player in the Brazilian electricity sector. This 

player faces a critical hedge decision for the latter half of the year. We explore two 

distinct decision scenarios: (a) making the hedge choice in July to cover exposure 

until September and subsequently making another hedge decision in October to 

safeguard against year-end risks, and (b) opting to hedge in July to mitigate 

exposure throughout the entire latter half of the year. Our goal is to determine the 

optimal hedge level that simultaneously maximizes the agent's profits while 

ensuring a predefined level of risk protection for each of these temporal blocks: July 

to September, October to December, and July to December. 

Initially, we consider a fixed opportunity cost of 201.00 (BRL/MWh) 

alongside the values detailed in Table 12: 
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Month 𝝊 𝝓 𝜼 
July -35.44 325.00 744 

August -61.30 325.00 744 
September -66.51 325.00 720 

October -92.54 310.00 744 
November -75.90 310.00 720 
December -59.32 310.00 744 

Table 12 – Input values for the numerical application 

Note:  is the uncontracted amount (MW);  is the forward price (R$/MWh); and  is the 

number of hours 

 

Furthermore, as a proxy for energy prices in the spot market, we consider the 

Price for Load Dispatch (PLD) determined by the CCEE. In this context, we rely 

on the monthly simulation conducted by the National System Operator for the year 

2021, specifically focusing on the energy market within the Southeast/Center-West 

region of Brazil. This submarket represents the highest demand and liquidity within 

the National Interconnected System. The pertinent data used in this analysis is 

summarized in Table 13: 

 

Blocks Start End 𝝅ഥ 𝝊ഥ 
1 July September 350.05 -54.29 
2 October December 230.72 -75.92 
3 July December 290.39 -65.10 

Table 13 – Summary data 

Note: 𝜋ത represents the average spot energy price in each block (BRL/MWh) and  

𝝊ഥ is the weighted average of the uncontracted amount in each block (MW average). 

 

Next, we establish two target risk levels: one representing intermediate risk 

and the other signifying extreme risk. Our approach defines intermediate risk as the 

expected outcome of the worst 30% of scenarios, while extreme risk encapsulates 

the worst 5% of outcomes. In essence, we treat intermediate risk as the expected 

value of negative results, and extreme risk as the expected value of results that fall 

below the threshold of maximum bearable loss. Consequently, we determine the 

following values: 𝑁 = 3, 𝛼ଵ = 70% , and 𝛼ଶ = 90%. 

These intermediate and extreme risk levels, along with the expected value of 

outcomes, serve as the criteria for comparison and prioritization in selecting the 

optimal strategy to evaluate operational performance. To facilitate this decision-

making process, we apply the Analytic Hierarchy Process (AHP) method 
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employing a 9-point Saaty scale. The Table 14 outlines the judgment matrix utilized 

in this analysis: 

 

 Extreme Risk Intermediate Risk Expected Value 
Extreme Risk 1.00 1.50 3.00 

Intermediate Risk 0.67 1.00 1.50 
Expected Value 0.33 0.67 1.00 

Total 2.00 3.17 5.50 

Table 14 – Matrix of Judgments 

 

The values adopted in this matrix were defined by the team responsible for 

the hedge decisions of this major agent that we are analyzing based on their 

experiences in the energy sector. For more details on AHP applications, we 

recommend Ishizaka and Labib (2011) and Rafaeli and Müller (2007). 

After this, we determine the weight matrix (Table 15), which is calculated 

from the division of each value defined in the matrix of judgments by the sum found 

in each column. 

 

 Extreme Risk Intermediate Risk Expected Value 
Extreme Risk 0.50 0.47 0.55 

Intermediate Risk 0.33 0.32 0.27 
Expected Value 0.17 0.21 0.18 

Table 15 – Matrix of weights 

 

Subsequently, we proceed to compute the criterion weight and consistency 

values, as outlined in Table 16. Criterion weight values are determined as the mean 

of each row in the weight matrix. Meanwhile, the consistency values are calculated 

by multiplying the judgment matrix by the criterion weight values and then dividing 

by the criterion weight found in each row. 

 

 Criterion Weight Consistency 
Extreme Risk 0.51 3.01 

Intermediate Risk 0.31 3.01 
Expected Value 0.19 3.01 

Table 16 – Criterion weight and consistency 

 

As a result of these calculations, we derive an average consistency index (CI 

= 0.0046) and subsequently, the consistency ratio (CR = 0.79%). It's worth noting 

that the consistency ratio falls well below the 10.00% threshold, indicating that the 
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pairwise comparison matrix exhibits acceptable consistency, thus affirming the 

validity and usability of the derived weights. Furthermore, Table 17 provides the 

values assigned to probability, along with the corresponding probabilistic weights, 

calculated as the ratio of each probability to their collective sum. 

 

 Criterion Weight Probabilistic Weight 
Extreme Risk 0.05 0.04 

Intermediate Risk 0.30 0.22 
Expected Value 1.00 0.74 

Table 17 – Probability and probabilistic weight 

 

From these calculations, we emphasize the significance of the criteria by 

weighing each criterion and multiplying it by its respective probabilistic weight. It's 

essential to note that by normalizing these values, we derive the following weights: 

𝜆଴ = 61.33%, 𝜆ଵ = 30.34%, and 𝜆ଶ = 8.33%. With this information, we proceed 

to optimize equation (112)  to estimate the influence of the hedge transaction on 

each of the analyzed blocks in the purchase decision. 

Subsequently, we utilize equations (113) and equation (114) to determine the 

Certainty Equivalent, the Risk Premium, and the value that the agent is willing to 

allocate for the hedge in each block. The primary results are summarized in Table 

18. 

 

 𝜹 

 

 

% 

Mean 

BRL 

x1000 

𝑪𝑽𝒂𝑹𝟕𝟎% 

BRL 

x1000 

𝑪𝑽𝒂𝑹𝟗𝟓% 

BRL 

x1000 

𝝋 

BRL 

x1000 

𝜸 

BRL 

x1000 

𝝎 

BRL 

/MWh 

1 100.0 -14,864 -14,863 -14,863 -14,863 0.00 350 

2 0.0 -6,435 -37,309 -58,621 -19,022 75.09 306 

3 45.3 -27,845 -55,185 -71,286 -37,789 34.59 325 

Table 18 – Results 

Note: In this context, δ represents the optimal percentage for the purchase decision in the 

hedge transaction, while "Mean" denotes the arithmetic mean of the financial position X, 

as defined in equation (4). CVaR70% signifies the average loss in the worst 30% of case 

scenarios for the financial position X, and CVaR95% represents the average loss in the 

most adverse 5% of case scenarios for this financial position. Furthermore, ϕ (phi) 

symbolizes the Certainty Equivalent, γ (gamma) represents the Risk Premium, and ω 

(omega) signifies the value the agent is willing to pay for the hedge. This value, ω, is 

determined as the sum of the average spot energy price and the Risk Premium. 
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4.3 
Conclusions 

 

Electricity market participants often grapple with short positions, exposing 

them to the volatilities of energy prices, which could lead to financial losses. One 

avenue to mitigate this risk involves hedging these positions through forward 

contracts, allowing agents to secure a fixed price for all or part of their short 

exposure. 

With this in mind, we introduce a model designed to assist in the hedge 

decision-making process, with the overarching goal of optimizing an agent's profits 

while maintaining a desirable level of risk protection. To achieve this, we factor in 

the agent's risk aversion, quantifiable through α percentiles of Value at Risk (VaR). 

Our model is underpinned by a preference function, enabling us to adapt to 

variations in the risk aversion levels across diverse preference ranges. 

To illustrate the model application, we apply it to a real-world scenario 

involving a major player in the Brazilian electricity sector, tasked with making a 

critical hedge decision for the latter half of the year. Our findings indicate that if the 

agent chooses to implement a two-stage hedge strategy (one in July, covering 

exposure through September, and another in October, safeguarding year-end 

exposure), a recommended approach would be to contract 100.00% of the 

uncontracted amount for the 3rd quarter, averaging 54.29 MW, with no hedging 

required in the 4th quarter. 

However, should the agent opt for a single hedge decision in July, covering 

exposure throughout the entire latter half of the year, our model suggests purchasing 

45.30% of their position. In this scenario, the optimal decision would entail buying 

an average of 29.49 MW (equivalent to 45.30% of the uncontracted amount in the 

2nd semester) at a rate of up to 325.00 BRL/MWh. 

This decision support tool empowers agents with short positions in the 

electricity market to make well-informed and optimal hedge transaction decisions. 

It is essential to note that while the model is robust, its primary limitation lies in the 

parameterization of the preference function. In our study, we employ the widely 

discussed AHP method.  
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5 
A Framework for Operations and Premium Estimation in a 
Brazilian Energy Futures Clearing House 

5.1 
Introduction 

A major overhaul of the Brazilian electricity sector began in 1997, when the 

first privatizations were initiated. The changes included the process of de-

verticalizing electricity production, transmission, distribution and 

commercialization, part of the Brazilian electricity sector restructuring project. An 

environment for accounting and liquidation of electricity was also created, the 

Wholesale Energy Market, which is currently the CCEE. 

In 2004, the Free Contracting Environment (Ambiente de Contratação Livre 

- ACL) and the Regulated Contracting Environment (Ambiente de Contratação 

Regulada - ACR) were created. Before that, the free market had very low liquidity, 

and with the creation of the ACL, it started to see growth, but, even so, the futures 

market continued to feature bilateral trades and the over-the-counter (OTC) format. 

In 2005, the first trading session for energy contracts in the country was created by 

the Brazilian Mercantile and Futures Exchange (BM&F), which, due to low 

liquidity, was discontinued. In 2012, BRIX and BBCE (Balcão Brasileiro de 

Comercialização de Energia), two important electronic trading platforms, started 

operations, which brought more agility to the business and standardization of 

contracts. However, these are platforms that still operate in an OTC format. 

During the overhaul of the Brazilian electricity sector, attempts were made to 

develop an energy exchange in which investors could trade futures contracts, but 

these failed, possibly due to the lack of an adequate methodology and technological 

tools that are available today, and due to characteristics of the market, such as the 

high volatility of electricity prices and the difficulty of establishing a mark-to-

market consensus. The high volatility of energy prices in the Brazilian market is a 

characteristic that is difficult to change, as the Brazilian electricity matrix features 

hydraulic energy as its main source, which is extremely dependent on climatic 
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factors, which are difficult to predict. Periods of drought or prolonged rain, for 

example, can cause a sharp rise or fall in short-term energy prices and the futures 

market. 

The high volatility of energy prices undermines the process of securing 

multilateral guarantees and, today, some of the most sophisticated methods to deal 

with this issue are used in European and American energy exchanges. The main 

method is cascading, where futures contracts with longer periods expire on 

previously agreed dates and are replaced by shorter, equivalent contracts, promoting 

greater security and liquidity in the market. This methodology can be adapted to 

Brazilian specificities to provide less volatility and increase market liquidity. 

Another alternative to increase the security and liquidity of the market, with 

the objective of making the operation of a Brazilian energy exchange viable, is to 

structure an operation in which the clearing house assumes the positions of clients 

that do not respond to the margin call, after the mark-to-market. As the purpose of 

the transaction is not speculative and, in this model, the clearing house closes the 

positions it has taken as soon as possible. This strategy makes the existence of a 

symmetric order in the order book unnecessary to close the position of a client who 

does not respond to the margin call. In a highly liquid market, the manager would 

not need to take any position and would simply close the position of these clients 

using other clients' open orders, from the order book. However, in the Brazilian 

energy market, due to low liquidity, it would not always be possible to close the 

position immediately and it would be necessary, to protect the clearing house and 

the clients, to set up an operation in which the clearing house would, provisionally, 

assume the position of that client, removing them from the operation. 

Recently, Souza et al. (2021) analyzed the economic preconditions for the 

Brazilian electricity market, perceptions, and expectations of agents about a specific 

future electricity market, through an exploratory study. In this study, questionnaires 

were applied to market agents to estimate the perception and expectation of the 

conditions for the implementation of an electricity futures exchange in Brazil. The 

study identified mostly positive perceptions about the economic preconditions for 

the creation of a future electricity market, which reinforces the importance of 

developing works that seek to build frameworks that help in the feasibility of an 

electricity futures exchange. 
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The objective of this work is to develop a framework for an electricity futures 

exchange and simulate its operation, adhering to the Brazilian reality of low 

liquidity and high volatility, where the clearing house assumes the positions of 

clients that do not respond to the margin call, after marking to the market, and 

generate relevant information for agents who are willing to create an enterprise of 

this type in Brazil.  

For the work, we produced simulations of a set of possible scenarios, 

including bullish and bearish shocks and different levels of liquidity. We also 

analyzed the sensitivity of returns in relation to the expected level of liquidity, given 

the characteristics of the Brazilian market, and we evaluated the option of taking 

out insurance to protect the clearing house. The insurance premium was calculated 

using a Monte Carlo simulation, a well-established and widely used method in 

studies of derivatives and futures markets, used in studies such as those of Irwin et 

al. (1996), Cortazar and Schwartz (1998), Abadie and Chamorro (2009) and Pelajo 

et al. (2019). The analysis of the simulation results and the insurance calculation 

are novel and important information for market agents interested in the creation of 

a Brazilian electricity futures clearing house. 

The article is divided as follows: the first chapter presents the theoretical 

framework of the work; chapter 5.2 presents the methodology used; chapter 5.3 

discusses the simulation results; and chapter 5.4 presents the conclusions of the 

work. 

 

5.2 
Theoretical foundation 

5.2.1 
Central Counterparty Clearinghouses 

Central counterparty clearing houses (CCPs) are formed by companies that 

intermediate in operations in a market and operate in a structure in which they 

assume the credit risk of all parties, but as their net position is always zero, they do 

not assume the market risk (Bliss & Steigerwald, 2006). The CCP becomes the 

intermediary for all trades (Figure 13) between the members of a given market, 

converting all trades into symmetrical contracts between the parties involved and 

the CCP. Settlement of positions is made much easier with this model, as the 
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position taker only needs to find a symmetrical position in the CCP's order book to 

close it. This eliminates the need for bilateral contract termination. 

 

Note: Adapted from Cont and Kokholm (2012). 

 

When contracts are centrally managed, there is a reduction in the need for 

collateral, as only the net positions of agents are considered, reducing risk when 

compared to a non-centralized structure (Cont & Kokholm, 2012). Another 

advantage of a CCP is the reduction of operating costs (when compared to bilateral 

contracts), transparency and the mitigation of default risk, as the CCP protects 

members against this type of risk (Nosal, 2010). The CCP is also responsible for 

marking the position of customers to the market and ensuring the transfer of 

amounts according to the result of the operation, associated with their contracts 

(Pirrong, 2009). 

 

5.2.2 
Energy futures: risk premiums and pricing 

A classic approach to explaining commodity futures prices, where future price 

expectations are uncertain, is to assign an inventory carrying cost (such as inventory 

cost and depreciation) and a premium risk charged by the speculators, so that the 

futures price includes these components. By selling futures, asset holders get rid of 

the risk of future variations and pass them on to speculators, who are remunerated 

with a premium for the risk they assume. When we consider the cost of carrying 

inventory, it is possible to highlight an important component that is considered 

Figure 13 – Over-the-counter OTC (L) and central counterparty clearing CCP (R) 
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separately in the models, which is the convenience fee. A convenience fee exists 

when the possession of a certain stock can be useful to its holder. For example, it 

may be useful for a producer to have inventory to meet unexpected demand (Fama 

& French, 1987; Kaldor, 1939). Algebraically, we can define the relationship 

between future price (PF), expected price (EP) and current price (CP) as a function 

of the interest rate 𝑖, the cost of carrying inventories 𝑐′ , the risk premium 𝑟  and the 

rate of convenience 𝑞, as presented in equation (117) (all terms are marginal): 

 

 𝐸𝑃 − 𝐶𝑃 =  𝑖 +  𝒸′ –  𝑞 + 𝑟 (117) 

 

In markets where hedgers are future sellers, we have the following 

relationship, presented in equation (118) and equation (119): 

 

 𝐹𝑃 − 𝐶𝑃 =  𝑖 +  𝑐′ –  𝑞 (118) 

 

 𝐹𝑃 =   𝐸𝑃 −   𝑟 (119) 

 

When the hedgers are future buyers, we can use equation (120) and equation 

(121) to describe the relationship between future price (PF), expected price (EP) 

and current price (CP) as a function of the interest rate  𝑖, the cost of carrying 

inventories 𝑐′, the risk premium 𝑟  and the rate of convenience 𝑞: 

 

 𝐹𝑃 − 𝐶𝑃 =  𝑖 +  𝑐′ (120) 

 

 𝐹𝑃 =   𝐸𝑃 −   𝑟 +  𝑞 (121) 

 

The market behavior, where the futures price falls below the expected future 

price and the futures price converges to the spot price, at maturity, from underneath, 

is known as normal backwardation. In general, the behavior of normal 

backwardation is associated with circumstances where there is a low level of supply 

and/or a low level of inventory. When the opposite occurs, that is, when hedgers are 

on the long end and speculators are on the short end, the situation is reversed, and 

futures prices converge to the spot price from above. This market behavior is known 
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as contango. Contango behavior is usually associated with circumstances where 

there is an immediate abundant commodity supply (Benth et al., 2008). 

In another extremely popular approach to explaining the behavior of 

commodity futures prices, the price of the futures contract is divided into two 

components, one component related to the forecast of spot prices of the commodity 

for the future date and another related to the risk premium. The risk premium in this 

case would be related to the ability of a restricted subset of speculators to better 

predict the futures price than other market participants and futures contract prices 

would be unbiased predictors of the futures price. This theory is known as 

forecasting theory and its advocates argue that there would be no clear price 

movement trend in futures markets and that the proportion of profits relative to 

contango or normal backwardation would be zero (Lee & Zhang, 2009). 

Lee and Zhang (2009) examine the characteristics of the price movements of 

29 markets and present evidence of the validity of the mechanisms explaining the 

prices of futures contracts proposed by the two theories, simultaneously showing 

that, depending on market conditions, one theory is dominant to explain the 

behavior of prices. The common view that two theories are mutually exclusive is 

replaced by an interpretation that they complement each other and, in a way, 

compete. It is observed that the presence of normal backwardation, contango or 

forecasting is related to the specific characteristics of each market and, according 

to its specificities, one type of mechanism can become dominant. 

The electricity markets are part of the commodity markets, and are 

characterized by the limitation in storing electricity, which directly influences the 

behavior of spot prices for electricity and derivatives, which futures and forward 

markets are part of. The price behavior differs from other commodities, where it is 

possible to wait, increasing storage, for the most opportune moment to offer them 

to the market. Without this option, arbitrage arising from storage capacity is 

extremely limited and prices are expected to be highly dependent on demand and 

specific local conditions, such as weather conditions and the level of local economic 

activity (Lucia & Schwartz, 2002). Models based on storage capacity thus have 

limited power to explain prices in electricity markets. 

In electricity markets where hydroelectric generation with reservoirs is 

predominant, there is evidence that the theory of inventory cost and convenience 

rate is relevant, as the reservoirs of hydroelectric plants work to store electricity. 
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Empirical results from Nord Pool, one of the most important in Europe and with 

contracts traded in more than 14 countries, show that, for weekly futures contracts, 

hydrological conditions have a great influence on market behavior. The 

convenience rate is positive (normal backwardation) when reservoir levels are low, 

in the first half of the year, and negative (contango) when levels are high, in the 

second half of the year. On average, the observed convenience rate is negative and 

spot prices tend to be below the prices of futures contracts, in contango, with risk 

premiums having a negative sign over the analysis period, from 1996 to 2006 

(Botterud et al., 2010). 

 

5.2.3 
Diffusion processes with jumps and asset pricing 

 

Distributions of returns on some assets traded in an exchange environment, 

such as stocks, have thick tails (a leptokurtic format) when compared to the normal 

distribution. This phenomenon can be caused by the presence of price jumps, which 

are infrequent and large-scale movements (Yan, 2011). The energy market has well-

known characteristics of asset price behavior, such as mean reversion, high 

volatility and the presence of jumps, and the models developed need to consider 

these characteristics. 

A classic modeling of this type of process, where there is a discontinuity in 

the pattern of movements, with the presence of jumps, was developed by Merton 

(1976). This approach allows the calculation of the option value (insurance) in the 

presence of a jump, which was not possible until then, with the diffusion model 

developed by Black and Scholes (1973). 

This approach proposes two components that explain the variation in the price 

of the asset, one linked to a normal variation, with marginal effects, such as 

adjustments between supply and demand or changes in interest rates; and the other 

based on important and completely new information to the market, which causes 

more than marginal effects on prices. The first component, with marginal effects, is 

governed by the Wiener process and the second is modeled as a Poisson process, 

where the event is the arrival of new information on the market about a given stock. 
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New information arrives independently and is evenly distributed. The differential 

stochastic equation representing stock returns is presented in equation (122): 

 

 𝑑𝑆/𝑆  =  (𝛼 −  𝜆𝜅)𝑑𝑡 +  𝜎𝑑𝑧 +  𝑑𝑞 (122) 

 

Where 𝑆 represents the asset price, 𝑑𝑆 is the price change, 𝛼 is the expected 

instantaneous return, 𝜎 is the instantaneous volatility of the returns,  𝑑𝑧 is the 

Gauss-Wiener process, and 𝑑𝑞 is the Poisson process. Processes 𝑑𝑧  and  𝑑𝑞 are 

independent. The average amount of new information (number of hops) per unit of 

time is represented by 𝜆. 𝜅 is the expected value of (Y-1), a random variable that 

represents the percentage change if the Poisson event occurs.  

 

If  𝜆, 𝜅 and  𝜎 are constant, the returns on stock prices over time t can be 

described according to equation (123): 

 

 (𝑆(𝑡))/𝑆  =  𝑒𝑥𝑝[(𝛼 − 1/2𝜎^2 −  𝜆𝜅)𝑡 +  𝜎𝑧(𝑡)] 𝑌(𝑛) (123) 

 

When Y(n) is a lognormal distribution, 
ௌ(௧)

ௌ
  also assumes a lognormal 

distribution. Merton (1976) demonstrates that the European option value can be 

defined according to equation (124): 

 

 
𝐹(𝑠, 𝑡)  =  ෍ 𝑒ିఒ௧(𝜆𝑡)௡

ஶ

௡ୀ଴

ൣ𝜀௡൛𝑤(𝑠𝑥௡𝑒ఒச୲, 𝑡; 𝐸, 𝜎ଶ, 𝑟)ൟ൧ 
(124) 

 

Where 𝜀௡൛𝑤(𝑠𝑥௡𝑒ఒச୲, 𝑡; 𝐸, 𝜎ଶ, 𝑟)ൟ represents the value of the option according to 

the Black-Scholes formula for the exercise price E and risk-free rate 𝑟. 
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5.3 
Methodology 

5.3.1 
Modeling the clearing house process: a simulation approach 

For the simulation of the electricity futures clearing house operation, we used 

the contract and financial volume data from the Brazilian Electricity Trading 

Agency (BBCE) referring to January 2020 (Appendix I. Supplementary Data 1 – 

Monthly Volumes), obtained from the company's website. The volume of contracts 

traded by BBCE in January 2020 was 6,245 contracts, through which a financial 

volume of BRL 4.2 billion and 17,446,000 MWh of energy were traded, 

representing a weekly average of 1,419 contracts, BRL 954.5 million in financial 

volume and 3,965,000 MWh. The settlement of differences price (Preço de 

Liquidação das Diferenças – PLD) is determined on a weekly basis, considering 

the load levels of each submarket of the Brazilian electrical system. Monthly traded 

contracts and financial volume data are not normally made available to the market. 

This is private and difficult to access information. We obtained the data from a news 

item on the company's website and therefore used them as an estimate. However, 

there is no data available for other months and the use of the January 2020 volume 

for the other months is the best estimate that was possible for this work. 

We obtained the weekly volumes through the daily average of the total 

volume transacted through BBCE in January and the rate of new contracts 

considered in the model is constant over the weeks. Seasonality is not considered 

in the rate of new contracts. The choice of a constant rate of creation of new 

contracts was due to the absence of information on monthly volumes for BBCE. 

Future works may include this feature if necessary and if the data to support the 

choice of seasonality in the rate of new contracts are available. 

The choice of BBCE data as a basis for volumes is due to it being the most 

important OTC for electricity futures contracts in Brazil. Thus, it is an excellent 

reference of volume for simulating the clearing house. We inserted the weekly 

volumes in the model considering the selling and buying ends and therefore the 

number of positions is twice the number of contracts. 

To perform the calculations and generate the graphs, we developed a Python 

code (Appendix I. Supplementary Data 2 – Python Code) in version 3.8 64-Bit and 
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the following packages: numpy version 1.18.1; pandas version 1.0.1; matplotlib 

version 3.1.3; IPython version 7.12.0; and ipywidgets version 7.5.1. 

 

5.3.2 
Simulation of contract price trajectories and weekly returns 

As the electricity futures market in Brazil continues to trade bilaterally and in 

the OTC format, information on futures market trading prices is not reliably 

available, as it does not come from a liquid and transparent market, with public 

information. This information is available to a very limited extent. 

Today there is a private company (DCIDE) that consolidates some 

information and expectations of market participants to sell periodical bulletins 

containing, among other information, the forward curve projected by it. However, 

the data used are neither public nor complete. 

On the other hand, energy spot price paths are public and reliable, as are spot 

price forecasts, which rely on a robust methodology and forecast models fully 

available to market agents. It is to be expected, therefore, that in a future operation 

of an energy exchange the forward already includes all market information 

regarding prices and expectations and that future variations result only from the 

inclusion of new information. 

The presence of jumps can occur, as these are also the result of the arrival of 

new information to the market. Thus, we assume that the jump diffusion process is 

the best representation for the movement of prices in the futures market. The use of 

another process to represent the price variation of futures contracts, such as an 

autoregressive model, could go against the non-arbitrage argument, which is valid 

in a highly liquid and transparent environment. 

The price trajectory modeling was based on the model proposed by Merton 

(1976); however, we forced the jumps associated with the Poisson process, in the 

proposed modeling, to occur in two of the three scenarios of the simulated operation 

for 1 year. This is because it is important to assess the financial impact when the 

jump in prices occurs throughout the year, compared to the scenario where the 

jumps do not occur. Thus, we modeled three price trajectories, using the Brownian 

geometric movement to represent the returns. In the base scenario, we evaluated the 

operation in a year where there are no jumps. The other two scenarios evaluate the 
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operation where there is a jump of 50% positive and 50% negative, respectively, in 

one of the randomly chosen weeks in each price trajectory. 

The PLD has a maximum and minimum value, which for 2020 was set at BRL 

559.75 and BRL 39.68, respectively (CCEE, 2020). However, for futures contracts, 

we do not impose this price restriction, as risk premiums may be applied, depending 

on the behavior of the market, causing prices to have to be adjusted and, eventually, 

they may exceed these legal limits of the spot market. 

We started from the premise that there is no type of convenience fee for 

holding a futures contract. We made this choice since the behavior of the risk 

premium can change due to several factors, including hydrological ones, as seen in 

the Nord Pool market (Botterud et al., 2010) Market behavior can also change 

according to market hedging needs and speculators' positioning. Although some 

studies such as those of Luz et al. (2012) and Costa (2018) identified the presence 

of contango in the Brazilian forward market, the data used for the studies are quite 

limited and scarce, because the forward market is in the OTC format, without 

information transparency and full standardization. Thus, inferring a premium in the 

behavior of price paths would be premature. Therefore, we consider the drift to be 

zero, so that only the component of the Wiener process has an influence on the price 

variation. 

Below, we show equation (125) of returns (𝑅௧), used in the base scenario, 

where there are no jumps and which follows a stochastic Wiener process (𝑆௧ ), 

where α is the drift,  𝑡 is the time and  𝜎 is the deviation pattern. Eliminating the 

drift and using  ∆𝑡 = 1/52, the return at 𝑡 is according to equation (126), in which   

are independent Gaussian variables with a mean of 0 and variance of 1. Prices at 

𝑡 + 1 are determined according to equation (127).  

 

 𝑅௧  =  𝛼𝑑𝑡 + 𝜎𝑑𝑧 (125) 

 

 𝑅௧  =  𝜎𝜖√∆𝑡 (126) 

 

 𝑃௧ାଵ = 𝑃௧ ∗ 𝑒ோ೟∗ଵ (127) 
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5.3.3 
Calculation of positions taken by the clearing house 

In the proposed model, the clearing house assumes the position of clients that 

do not respond to the margin call. To calculate the positions provisionally assumed 

by the clearing house, it is necessary to calculate the probability of customer default. 

The assumption adopted is that the clearing house works with a maximum 

probability of default of 1%, referring to a weekly variation of 100% (positive or 

negative). To represent this behavior, we chose the default percentage function   𝑑% 

defined as 𝑑% = ඥ∣ 𝑟௧ ∣ , in equation (128), where 𝑑% is the percentage of default 

for the absolute percentage return  ∣ 𝑟௧ ∣ that week. Note that for a 100% variation 

from one week to another, the default percentage is 1% (𝑑% = √∣ 1 ∣ =  1). For a 

weekly return of 50%, the default percentage is 0.71% (𝑑% = ඥ∣ 0,5 ∣ =  0,71). 

This function generates a default percentage that varies according to the weekly 

return. When the weekly return is small, the number of customers in default is small 

for that week. When the weekly return is large, the number of customers in default 

increases. 

 

 𝑑% = ඥ∣ 𝑟௧ ∣ (128) 

 

The number of positions (𝑥௧) taken by the clearing house, given the weekly 

volume of 3,965,000 MWh (7,930,000 MWh considering both ends, but only one 

end that is called margin), is given by equation (129), where the variable side is 

assigned as -1 for negative returns and 1 for positive returns. 

 

 𝑥௧ = ඥ∣ 𝑟௧ ∣∗ 3.965.00 ∗ 𝑠𝑖𝑑𝑒 

𝑠𝑖𝑑𝑒 = ൜
−1, 𝑝𝑎𝑟𝑎 𝑟௧ < 0 
1, 𝑝𝑎𝑟𝑎 𝑟௧ >= 0

 

 

(129) 

The positions opened weekly, based on BBCE's January 2020 data, are as 

follows: 

● 1,419 new contracts per week. 

● 1,419*2 = 2,838 open contracts (considering both ends). 

● 3,965,000 MWh traded weekly (7,930,000 considering both ends). 
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5.3.4 
Clearing house 

The total net position depends not only on volatility, but also on the time it 

takes to close positions. We define the liquidity ratio L as the average time it takes 

the clearing house to dispose of contracts. The scenario of greater liquidity is 

associated with the index L=1 period and the scenario of less liquidity is associated 

with the index L=4 periods. The position is given by equation (130), which 

represents the sum of positions assumed and not yet closed, in period   for the 

liquidity ratio L. 

 

 
𝑋௧ = ෍ 𝑥௧ି௞

௅

௞ୀଵ

 
(130) 

5.3.5 
Scenarios 

Twelve scenarios were analyzed, obtained based on three price levels (neutral, 

bullish shock and bearish shock) and four liquidity levels, represented by the 

number of periods for the clearing house to dispose of the position (1, 2, 3 and 4 

weeks). We simulated the bullish and bearish shocks as follows: a week is randomly 

chosen in the year for a bullish or bearish shock of 50%. The distribution of the 

binary variable is uniform, so that for each trajectory, each week of the year has an 

equal probability of being selected for the occurrence of the shock. The bullish or 

bearish shock is a regime change that is represented in the model according to 

equation (131): 

 

 𝑟௧ =  𝜎𝜖√∆𝑡  ∗ (1 ±  0,5 ∗ 𝐼{଴,ଵ}
௧ ) (131) 

 

where 𝜎  is the standard deviation, 𝜖 are independent Gaussian variables with a 

mean of 0 and variance of 1, ∆𝑡 is the time interval and 𝐼{଴,ଵ}
௧  is the binary variable 

that assumes the value of 1 when regime change occurs and 0 when it does not. The 

objective is to simulate the occurrence of stress, which can be caused, for example, 
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by a sudden drop in domestic consumption, as occurred recently due to the 

pandemic caused by Covid-19. 

 

We considered volatility of 17.03%, obtained from Argento (2020), who 

analyzed weekly forward contract returns data from 2012 to 2019, obtained from 

DCIDE. Volatility was obtained by applying the Markov-switching variance model. 

Even though the data are from the OTC market, these data are the best reference 

available for the simulation. The value of 17.03% is conservative for the purpose of 

this work and refers to the volatility of contracts maturing in one month (M1). The 

volatility of contracts with longer maturities is lower. As the volume segregated by 

maturity is not known, the choice of the highest volatility, in this case, is the most 

appropriate and conservative, to represent the possible variation for the set of 

contracts. For each scenario analyzed, we simulated 10,000 return and exercise 

paths for the insurance option. We simulated a period of 52 weeks, representing 1 

year of operation. The Table 19 summarizes the 12 scenarios analyzed. 

 

 Liquidity 
Returns Period 1 Period 2 Period 3 Period 4 

Bearish Shock Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Neutral Scenario 5 Scenario 6 Scenario 7 Scenario 8 

Bullish shock Scenario 9 Scenario 10 Scenario 11 Scenario 12 

Table 19 – Analyzed scenarios 

 

5.3.6 
Defining operation's financial outcome 

The financial result 𝜋௧ for the proposed operation, between a period t and 

another 𝑡 − 1 is given by equation (132) and the accumulated result  𝛱௧  in the 

period is given by equation (133): 

 

 𝜋௧ = (𝑃௧ − 𝑃௧ିଵ) ∗ 𝑋௧ (132) 

 

 
Π் = ෍ 𝜋௧

்

௧ୀ଴

 
(133) 
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where  𝑋௧ is the total net position, defined in Equation 130, and 𝑃௧ and 𝑃௧ିଵ are, 

respectively, the prices of the contracts at times 𝑡 and 𝑡 − 1. 

 

5.3.7 
Insurance 

We performed the insurance premium calculation using the Monte Carlo 

simulation, where, for each trajectory of returns, the insurance cover helps the 

clearing house to recover financially from any loss at the end of the 52-week period. 

The amount received from the insurance contract, when insurance cover is 

necessary, is equal to the absolute value of the accumulated loss. In the case of 

positive returns, at the end of the period, the clearing house does not trigger the 

insurance and the amount received from the insurance company is zero. 

Insurance for the clearing house can then be modeled as a put with strike =

0. The payoff  𝛼௦ of the option, at the end of the period T, is given by equation 

(134): 

 

 𝛼௦ = 𝑚𝑎𝑥(−Π்
௦ , 0) (134) 

 

The payoff for the average of the 𝑠 scenarios is given by equation (135): 

 

 
𝛼 =

1

𝑆
∗ ෍ 𝛼௦

ௌ

௦ୀଵ

 
(135) 

 

At time 𝑇 = 0, the present value   of the option brought at the risk-free rate is 

given by equation (136): 

 

 𝑝 = 𝛼 ∗ 𝑒ି்∗௥೑ (136) 

 

 



128 
 

5.4 
Results 

We ran the simulation model for the 12 scenarios. Below we present the 

graphs representing the results of the four liquidity levels, for the bearish shock 

(Figure 14), neutral (Figure 15) and bullish shock (Figure 16) price regimes. As 

expected, we observed that the lower the liquidity, which in practice translates into 

a longer time for the clearing house to dispose of positions, the greater the average 

size of the clearing house's positions. This behavior is observed for the three 

regimes (bearish shock, neutral and bullish shock). 

 

 

Figure 14 – Mean position - bearish shock (MWh) 
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Figure 15 – Mean position - bullish shock (MWh) 

Figure 16 – Mean position - neutral market (MWh) 
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The Figure 17 below presents the three graphs on the same scale for 

comparison purposes. It is possible to observe that, in the neutral regime, the 

positions vary less compared to the other two regimes, which was an expected 

result, since there is a sudden variation of 50% in the price in all the bullish and 

bearish shock simulations. 

 

 

5.4.1 
Calculation of cumulative returns 

The clearing house operation generates, at the end of the period, an 

accumulated result that will be positive or negative, but it is expected to be close to 

zero or not significant in relation to the total volume transacted. The purpose of the 

operation is not to make a profit, but to enable a market that has low liquidity. For 

this work, we calculated the accumulated returns of each of the trajectories for each 

scenario (Appendix I. Supplementary Data 3 – Accumulated Returns). The average 

of the returns, for each scenario, is presented in Table 20, where we can observe 

that the higher the liquidity level, the higher the modulus of average return is. The 

neutral scenario is the one with the lowest accumulated values, in absolute terms. 

Figure 17 – Results for the 3 price scenarios (MWh) 
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The values, however, are slightly negative, but very small in relation to the total 

amount transacted in the 52 weeks, of BRL 49.63 billion (BRL 954.5 million 

weekly). The fact that there is a floor for the PLD, which cannot be negative, 

generates slight asymmetry in the profile of returns, since the PLD, when it reaches 

zero, can only assume positive values. The same does not occur for very high SDP 

values, when there is always the possibility that they will continue to rise. 

For scenarios where there is a 50% bearish shock, there is a greater volume 

of long positions that need to be taken over by the clearing house and, for the same 

reason as above, generate a positive return. Similarly, when there is a bullish shock, 

the clearing house must take on a large volume of short positions and the return 

tends to be negative. When there is a bearish or bullish shock, the values, whether 

positive or negative, are higher in absolute terms than in the neutral scenario, but 

they are still small when compared to the financial volume traded in a year. 

For the same type of returns (bullish shock, neutral, or bearish shock), the 

lower level of liquidity is related to greater risk, with an increase in the positive and 

negative values of the accumulated returns. 

 

Prices/Liquidity 1 Period 2 Periods 3 periods 4 Periods 
Bearish Shock 231,369.96 400,853.01 615,791.92 837,066.17 

Neutral -113,536.15 -142,096.15 -154,850.71 -175,348.16 
Bullish Shock -276,514.78 -539,550.52 -733,045.02 -887,398.66 

Table 20 – Accumulated returns for 52 weeks (BRL) 

 

Considering that the clearing house's revenue would be 0.5% of the total 

contracts and both ends, it would have a revenue of BRL 496.36 million and the 

average loss, in the worst scenario, would represent only 0.19% of the revenue, 

which appears be quite reasonable in terms of cost, given the importance of the 

operation to the viability of the electricity futures clearing house. 

 

5.4.2 
Calculation of the risk-free rate 

We calculated the risk-free rate following the methodology adopted until 

2020 by ANEEL (ANEEL, 2020) to calculate the weighted average cost of capital 

(WACC) of generation, transmission, and distribution projects, where the fixed 

income bond used is the US Treasury Bond type “USTB10,” to estimate the risk-
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free rate. We obtained the series of annual data on the price of this security from the 

period from January 1995 to December 2012, and we calculated the arithmetic 

average, obtaining an average annual interest rate of 4.59%. 

Country risk, of 3.52%, is calculated using the median referring to the 

EMBI+BR from January 2000 to December 2012. We estimated American inflation 

using the average of the period from 1995 to 2012, obtaining the value of 2.47% 

per year. Considering this inflation, the real interest rate is 2.07%, which, added to 

the country risk, results in a risk-free rate of 5.59% per year for Brazil. 

 

5.4.3 
Insurance premium calculation 

We used the real options methodology to calculate the insurance premium, 

where the insurance premium is calculated as a put option. We calculated it for the 

12 scenarios, with the put value following the methodology presented in sections 

2.6 and 2.7. The put represents the option to sell the insurance at the value of  Π୘
ୱ  

(the result of the operation) when it is less than zero at the end of the 52-week 

period. The value is obtained by bringing the average payoff at the risk-free rate to 

the present value. Table 21 below shows the calculation of the average payoff, in 

BRL, for each of the 12 scenarios: 

 

Prices/Liquidity 1 Period 2 Periods 3 periods 4 Periods 
Bearish Shock 1,155,485.50 1,570,661.12 1,800,629.69 1,952,360.92 

Neutral 1,594,821.36 2,202,501.27 2,676,045.19 3,073,308.72 
Bullish Shock 2,157,544.80 3,110,220.91 3,822,222.31 4,422,000.43 

Table 21 – Average payoffs in BRL for the 12 scenarios 

 

The Table 22 shows the percentage of simulations in which the insurance was 

activated. Note that the value is high (close to 50%), which is understandable given 

that the generation of prices follows a geometric Brownian motion (GBM) and that 

the only restriction is that prices cannot go below zero. Values slightly below 50%, 

similarly to what happens with returns, are justified by the restriction of negative 

prices, which impose a barrier to falling prices, a restriction that does not exist for 

positive values. 
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Prices/Liquidity 1 Period 2 Periods 3 periods 4 Periods 
Bearish Shock 45.48% 42.59% 40.40% 39.35% 

Neutral 47.63% 44.43% 42.62% 40.65% 
Bullish Shock 47.78% 44.13% 42.42% 40.21% 

Table 22 – Percentages of simulations that triggered the insurance 

 

Considering the payoffs and the risk-free rate of 5.59% per year, we 

calculated the insurance value for each of the scenarios. The insurance calculation 

results are shown in Table 23: 

 

Prices/Liquidity 1 Period 2 Periods 3 periods 4 Periods 
Bearish Shock 1,092,666.02 1,485,270.08 1,702,736.11 1,846,218.27 

Neutral 1,508,116.81 2,082,759.41 2,530,558.50 2,906,224.28 
Bullish Shock 2,040,247.06 2,941,129.69 3,614,422.20 4,181,592.60 

Table 23 – Insurance calculation in BRL for the 12 scenarios 

 

As, in the model, the insurance is annual, the values of the average payoffs 

are close to the value of the insurance itself. The amounts for the insurance of the 

operation are also small when compared to the total volume transacted, of BRL 

49.63 billion. Considering billing of BRL 496.3 million, according to the rationale 

already presented, the maximum insurance value of BRL 4.2 million represents 

only 0.84% of the projected revenue, a value that could possibly be incorporated 

without major problems to the operation. 

 

5.5 
Conclusions 

In this work, we proposed an operating model for a clearing house for trading 

electricity futures that would adhere to the Brazilian reality, marked by high 

volatility in energy prices and low liquidity of futures contracts. In the proposed 

model, the clearing house provisionally assumes the positions of clients that do not 

respond to the margin call, after marking to market, thus avoiding contract default. 

This strategy allows the clearing house to manage default risk even in a market with 

low liquidity, removing customers who do not respond to the margin call from the 

operation. The model can be used in conjunction with cascading, which can provide 

the market with increased liquidity, as higher value contracts, as they approach the 

expiration date, transform into several smaller, more accessible contracts that 

adhere to other customers. 
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We performed the simulations to reflect normal operating conditions and 

bullish and bearish shock scenarios in spot prices. These shocks need to be 

considered in the model due to the Brazilian electricity matrix, where there is a 

predominance of hydraulic sources, and the price formation mechanism based on 

marginal costs. We modeled the financial returns of the positions as a GBM, 

associated with the constraint of positive prices. We demonstrated that the average 

returns, for different levels of liquidity, generate a total return in 52 weeks that, in 

absolute terms, is small compared to the revenue and volume transacted. The worst 

average return occurred for the bullish shock scenario and liquidity associated with 

4 days to dispose of the position, where the average return was BRL -0.89 million, 

compared to BRL 49.64 billion traded in the period of 52 weeks. 

We also calculated the insurance value for each scenario, for the case in which 

the clearing house does not want to assume the risk of unexpected returns. The 

insurance needs to cover the most unlikely events and therefore its calculated value, 

for all scenarios, is above the average value of the clearing house's returns, however, 

it protects it against all negative results. Even so, the value of the maximum 

insurance, in the bullish shock scenario and with 4 days to close the positions, is 

BRL 4.18 million (0.84% of estimated revenue), an apparently reasonable value in 

terms of cost, considering the importance of the operation. 

This work therefore showed that this operating model, where the clearing 

house assumes customer positions, generates relatively small additional costs and 

they may be easily absorbed by the clearing house. Even the insurance option 

presented small values for each scenario and compared to the total volume of the 

operation and projected billing. These data are of great use to agents interested in 

opening a venture of this type in Brazil, which still lacks an electricity futures 

exchange. 

Among the limitations of the study, we highlight the non-availability of 

detailed data on volumes and values of contracts traded. As the market is private 

and in the over-the-counter format, the volume of operations of the main OTC 

markets is not available and the contracts are bilateral. Therefore, we used constant 

contract volumes, without considering any type of seasonality in the volume of 

futures contracts. 

For future work, we suggest a search for more accurate data on contract 

volumes from the main companies that provide the over-the-counter market in a 
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way that makes it possible to build a model with seasonalized volume data. Another 

suggestion is to adapt the model to a market where contango or normal 

backwardation predominates. 
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7 
Appendix 

Appendix I. Supplementary Data 1 – Monthly Volumes 

 

 

Appendix I. Supplementary Data 2 – Python Code 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from IPython.display import display 

import ipywidgets as widgets 

np.random.seed(seed=43) 

get_ipython().run_line_magic('matplotlib', 'inline') 

 

def gbm(n_periods = 52, n_scenarios=10000, mu=0.00, sigma=0.1703, 

steps_per_period=1, s_0=191.89): 

    dt = 1/steps_per_period 

    n_steps = int(n_periods*steps_per_period) + 1 

 

    rets_plus_1 = np.random.normal(loc=(1+mu)**dt, scale=(sigma*np.sqrt(dt)), 

size=(n_steps, n_scenarios)) 

    rets_plus_1[0] = 1 

    return s_0*pd.DataFrame(rets_plus_1).cumprod(),  pd.DataFrame(rets_plus_1-

1) 

Contratos BBCE
Mês: Jan. 2020

Tipo Qte Contratos Qte MWh Volume Financeiro Média Contrato MWh Média Contrato R$
Tela 3.637 4.727.000 1.100.000.000          1.300                                  302.447                             
Boleta 2.608 12.719.000 3.100.000.000          4.877                                  1.188.650                         
Total 6.245 17.446.000 4.200.000.000          2.794                                  672.538                             
média diária 284 793.000 190.909.091              
média semanal 1419 3.965.000 954.545.455              

Cenário Base (1% default) 14,19 39.650 9.545.455                  2.794                                  672.538                             
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def regimen_change(n_periods = 52, n_scenarios=10000, mu=0.00, sigma=0.1703, 

steps_per_period=1, s_0=191.89, delta_mu=0.5): 

    t_star = np.random.randint(1, n_periods-1, (1, n_scenarios)) 

 

    dt = 1/steps_per_period 

    n_steps = int(n_periods*steps_per_period) + 1 

 

    rets_plus_1 = np.random.normal(loc=(1+mu)**dt, scale=(sigma*np.sqrt(dt)), 

size=(n_steps, n_scenarios)) 

    rets_plus_1[t_star, np.array(range(n_scenarios))] = (1 + delta_mu)**dt 

     

    rets_plus_1[0] = 1 

    return s_0*pd.DataFrame(rets_plus_1).cumprod(),  pd.DataFrame(rets_plus_1-

1) 

 

def default_position (ret, open_positions = 3965000): 

    return ret.applymap(lambda x: -np.sqrt(abs(x))*open_positions/100 if x>0 else 

np.sqrt(abs(x))*open_positions/100) 

 

def cumulative_clearing_position (default, L): 

    return default.shift(1).rolling(L,min_periods=1).sum() 

 

def wealth_change (prices, X): 

    return (prices - prices.shift(1))*X 

     

def cumulative_wealth (wealth): 

    return wealth.cumsum() 

 

def average_payoff(cum_pl): 

    return cum_pl.iloc[-1].apply(lambda x: max(-x, 0 )).mean() 

 

def present_value(value, rate, years = 1): 

    return value*np.exp(-1*rate*years) 
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def plot_wealth(wealth, title, L): 

    y_max=wealth.values.max() 

    terminal_wealth = wealth.iloc[-1] 

     

    tw_mean = terminal_wealth.mean() 

    tw_median = terminal_wealth.median() 

    failure_mask = np.less(terminal_wealth, 0) 

    n_failures = failure_mask.sum() 

    p_fail = n_failures/len(terminal_wealth) 

 

    e_shortfall = np.dot(terminal_wealth, failure_mask)/n_failures if n_failures > 0 

else 0.0 

    fig, (wealth_ax, hist_ax) = plt.subplots(nrows=1, ncols=2, sharey=True, 

gridspec_kw={'width_ratios':[3,2]}, figsize=(24, 9)) 

    fig.suptitle("Resultado Financeiro Clearing ("+ title +" - L = "+str(L)+")", 

fontsize=16) 

    plt.subplots_adjust(wspace=0.0) 

     

    wealth.plot(ax=wealth_ax, legend=False, alpha=0.3, color="black") 

    wealth_ax.axhline(y=0, ls="--", color="black") 

 

    wealth_ax.set_ylim(top=y_max) 

     

    terminal_wealth.plot.hist(ax=hist_ax, bins=50, ec='w', fc='black', 

orientation='horizontal') 

    hist_ax.axhline(y=0, ls="--", color="black") 

    hist_ax.axhline(y=tw_mean, ls=":", color="black") 

    hist_ax.axhline(y=tw_median, ls=":", color="black") 

    #hist_ax.annotate(f"Mean: ${int(tw_mean)}", xy=(.7, .9),xycoords='axes 

fraction', fontsize=24) 

    #hist_ax.annotate(f"Median: ${int(tw_median)}", xy=(.7, .85),xycoords='axes 

fraction', fontsize=24) 
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    wealth_ax.set_title('Resultado Acumulado') 

    hist_ax.set_title('Distribuição Lucro Final') 

    hist_ax.axhline(y=0, ls="--", color="black", linewidth=3) 

    hist_ax.annotate(f"Option exercised: {n_failures} 

({p_fail*100:2.2f}%)\nE(payoff): ${average_payoff(wealth):,.2f}", xy=(.2, .15), 

xycoords='axes fraction', fontsize=24) 

 

price_up, returns_up = regimen_change(delta_mu=0.5) 

price_base, returns_base = gbm(mu=0) 

price_down, returns_down = regimen_change(delta_mu=-0.5) 

 

def average_position(returns, L): 

    x = default_position(returns) 

    X = cumulative_clearing_position(x, L) 

    return X.mean(axis=1) 

 

avg_neg = {'L1': average_position(returns_down, L=1),  

           'L2': average_position(returns_down, L=2),  

           'L3': average_position(returns_down, L=3), 

           'L4': average_position(returns_down, L=4)} 

 

ax_down = pd.DataFrame(avg_neg).plot.line(color="black",style=["-","--","-

.",":"]) 

ax_down.set(xlabel='semana', ylabel='posição (MWh)', 

title='Posição Média da Clearing (Choque de Baixa(-50%))') 

 

avg_base = {'L1': average_position(returns_base, L=1),  

           'L2': average_position(returns_base, L=2),  

           'L3': average_position(returns_base, L=3), 

           'L4': average_position(returns_base, L=4)} 
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ax_down = pd.DataFrame(avg_base).plot.line(color="black",style=["-","--","-

.",":"]) 

ax_down.set(xlabel='semana', ylabel='posição (MWh)', 

title='Posição Média da Clearing (Sem Jumps)') 

 

avg_pos = {'L1': average_position(returns_up, L=1),  

           'L2': average_position(returns_up, L=2),  

           'L3': average_position(returns_up, L=3), 

           'L4': average_position(returns_up, L=4)} 

 

ax_down = pd.DataFrame(avg_pos).plot.line(color="black",style=["-","--","-

.",":"]) 

ax_down.set(xlabel='semana', ylabel='posição (MWh)', 

title='Posição Média da Clearing (Choque de Alta (50%))') 

 

type(avg_base) 

 

f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=True) 

ax1.plot(pd.DataFrame(avg_neg),'-',color='black') 

ax2.plot(pd.DataFrame(avg_base),'-',color='black') 

ax3.plot(pd.DataFrame(avg_pos),'-',color='black') 

 

ax1.set_title('Posição Média da Clearing \n Choque de Baixa (-50%)') 

ax2.set_title('Sem Jumps') 

ax3.set_title('Choque de Alta (50%)') 

ax3.set(xlabel='semana') 

ax2.set(ylabel='posição (MWh)') 

plt.subplots_adjust(hspace = 0.5)  

 

def option_value (prices, returns, L, title): 

    x = default_position(returns) 

    X = cumulative_clearing_position(x, L) 

    pi = wealth_change(prices, X).dropna() 

    PI = cumulative_wealth(pi).dropna() 
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    plot_wealth(PI, title, L) 

    return(PI.iloc[-1].mean()) 

 

DownL1 = option_value(price_down,returns_down, 1, 'Mudança de Regime 

Negativa (-50%)') 

DownL2 = option_value(price_down,returns_down, 2, 'Mudança de Regime 

Negativa (-50%)') 

DownL3 = option_value(price_down,returns_down, 3, 'Mudança de Regime 

Negativa (-50%)') 

DownL4 = option_value(price_down,returns_down, 4, 'Mudança de Regime 

Negativa (-50%)') 

BaseL1 = option_value(price_base,returns_base, 1, 'Caso Base') 

BaseL2 = option_value(price_base,returns_base, 2, 'Caso Base') 

BaseL3 = option_value(price_base,returns_base, 3, 'Caso Base') 

BaseL4 = option_value(price_base,returns_base, 4, 'Caso Base') 

UPL1 = option_value(price_up,returns_up, 1, 'Mudança de Regime Positiva 

(50%)') 

UPL2 = option_value(price_up,returns_up, 2, 'Mudança de Regime Positiva (50%)'  

) 

UPL3 = option_value(price_up,returns_up, 3, 'Mudança de Regime Positiva 

(50%)') 

UPL4 = option_value(price_up,returns_up, 4, 'Mudança de Regime Positiva 

(50%)') 

 

print('Down L1 = ' + str(DownL1)) 

print('Down L2 = ' + str(DownL2)) 

print('Down L3 = ' + str(DownL3)) 

print('Down L4 = ' + str(DownL4)) 

print('Base L1 = ' + str(BaseL1)) 

print('Base L2 = ' + str(BaseL2)) 

print('Base L3 = ' + str(BaseL3)) 

print('Base L4 = ' + str(BaseL4)) 

print('UP L1 = ' + str(UPL1)) 

print('UP L2 = ' + str(UPL2)) 



151 
 

print('UP L3 = ' + str(UPL3)) 

print('UP L4 = ' + str(UPL4)) 

 

 

Appendix I. Supplementary Data 3 – Accumulated Returns 
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